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In this paper, we revisit the dressing field method (DFM) in the context of quantum
(gauge) field theories (QFT). In order to adapt this method to the functional path
integral formalism of QFT, we depart from the usual differential geometry approach
used so far to study the DFM which also allows to tackle the infinite dimension of the
field spaces. Our main result is that gauge fixing is an instance of the application of the
DFM. The Faddeev—Popov gauge fixing procedure and the so-called unitary gauge are
revisited in light of this result.
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1. Introduction

The dressing field method (DFM) was introduced in [I] as a way to reduce gauge
degrees of freedom in gauge field theories as a change of variables among the fields
of the theory. Since then, many applications of this method have been proposed, in
different contexts by collecting examples (some of them coming from the literature,
see [2] for a review), but always in relation to classical gauge field theories. This
is why, until now, this method was only considered in the framework of differential
geometry, which is the natural one for classical gauge field theories.

Let us just recall that to apply the DFM, one has to select in the gauge model a
(group valued) field u, the dressing field, which supports a specific gauge transfor-
mation: u must be constructed using (part/some of the) degrees of freedom in the
model, so that it is not an external element of the model. Then the dressing field
is used to “dress” all the gauge and the matter fields in the model with relations
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which look like gauge transformations (but they are not!). This produces dressed
fields with less (and even no more in the best case scenario) gauge variance. The
classical examples studied so far show that dressed fields are composite fields while
keeping the locality principle.

In this paper, we would like to start the study of applications of the DFM at the
quantum level, in the functional approach to quantum field theories (QFT). The
first application will focus on the Faddeev—Popov gauge fixing procedure (FPGFP)
in the functional integral, whose purpose, as one of the DFM, is to get rid of gauge
degrees of freedom (Sec. B:2)). The FPGFP relies on the choice of a representative
in each gauge class of fields, while the DFM makes apparent gauge-invariant fields.

The main result of this paper is that, in the FPGFP, the gauge fixing procedure
turns out to be an instance of the DFM. In short: for ideal gauge fixing maps
(see Definition [B]), the transformation occurring in the FPGFP turns out to be
a dressing composition, and not a gauge transformation as usually claimed. This
result is proved using our natural Assumption [7l Upon using this result, we rewrite
the FPGFP in the framework of the DFM, taking into account the subtleties of
the FPGFP and the special features of the DFM, in particular concerning gauge-
invariant fields.

In the recent paper [3], the conclusion that the gauge fixing procedure is an
instance of the DFM is also drawn for a U(1) model in the Lorenz gauge. We refer
to this paper for bibliographical comments about the comparison between the DFM
and the gauge fixing procedure.

One important consequence of this result is the possibility to compare different
gauge fixing conditions by looking at their associated dressing fields in the same
functional space. Indeed, the dressing field w is constructed out of the fields con-
tained in the model as expected by the method, but it also uses (as expected in
relation to the FPGFP) the extra ingredient which is the gauge fixing condition.
For instance, this allows us to relate the R gauge fixing condition to the “uni-
tary gauge” fixing condition by taking the limit £ — oo at the level of dressing
fields u themselves. It is worthwhile to notice that there is no consensus that uni-
tary gauges are true gauge fixings, see for instance [4] for one viewpoint and [5]
for the other one. However, several examples of “unitary gauges”, for instance in
the standard model of particle physics (SMPP) [II 2 6], can be understood as an
application of the DFM. The above mentioned limit amounts to considering that
all these “gauge fixing conditions” (R, and unitary gauges) fall into the unifying
standpoint of the DFM.

One key feature of many examples of the DFM studied so far is that the dressing
field w is local in the fields in the model (in the usual sense of QFT). However, for
many gauge fixing conditions (Lorenz, R¢), we can observe that the dressing field
u is not local in the fields in the model. This criterion of locality allows us to set
the “unitary gauges” apart from these gauge fixing conditions. It is already known
that the “unitary gauges” are of major interest because they show the observed
degrees of freedom. Following the (philosophical) line of reasoning developed in [7]

2550029-2



Gauge fizing in QFT and the dressing field method

(see also [3]) about the locality of u in terms of the fields in the model, we make the
assumption that the locality of the dressing field is related to the observability of
the dressed fields. It is out of the scope of this paper to address this point further.

As explained in detail in Sec. 2 in this paper we will not use the usual fiber
bundle approach to gauge field theories. Until now, the dressing field method has
been developed and illustrated in that framework since we focused mainly on clas-
sical field theories. But this is not the most pertinent framework for the functional
approach to QFT, even if it can be very useful for specific problems. For instance,
the geometrical structures are certainly not the best tools to use in the functional
integral of the quantization procedure.

So, for the applications we have in mind, especially the relation between the
DFM and the FPGFP, we have to adapt the DFM to the usual tools devoted to
this procedure. This is why, in this paper, we rewrite the dressing field method in
a more flexible framework, based, on the one hand, on functional spaces, that is
(smooth) maps on space-time (or locally on space-time) with values in some spaces
(Lie group, representation vector spaces for these Lie groups... ), and, on the other
hand, on the gauge group defining the gauge model under study.

In order to characterize “gauge fields”,* we will then equip these functional
spaces with actions of the gauge group. These functional spaces endowed with such
an action will be called field spaces. It is worthwhile to notice that different field
spaces can be based on the same underlying functional space, but with different
actions of the gauge group: this will play a key role in our approach. Examples
of such spaces are provided in Sec. 2] where the relation to the usual approach in
terms of fiber bundles and connections is explained.

We will also introduce maps between these functional/field spaces, in order to
get a general framework to write the DFM using such instances of maps. Especially,
in Sec. 22] we put forward the concept of “field-composer”, which can be used at
many places in relation to the DFM. This shows in particular that the DFM can
be naturally conceived in the above mentioned framework of functional spaces and
actions of the gauge group defined on them.

Many computations given in the paper may look “usual” on first reading. But, as
mentioned in several papers now (see the review [2] for all the details and references
therein), the DFM is close in many respect, but not equivalent, to the ordinary
methods used so far to reduce gauge symmetries. It was already noticed that it can
“replace” the spontaneous symmetry breaking mechanism (SSBM) in the SMPP,
opening some new avenues for understanding the electro-weak sector of the SMPP
(since it decouples the apparition of the observed degrees of freedom from the choice
of an energy scale at which to produce mass terms). In this paper, we open a new
chapter by relating the DFM to the FPGFP that was thought to be quite different
before this work (even by the authors).

2In this paper, “gauge fields” collectively refers to all the fields in the theory on which the gauge
group acts.
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Let us give a simple illustration of the fact that the DFM provides highly sat-
isfactory responses to some usual questions related to gauge fixing. To do that, let
us apply the DFM to the simple example of an Abelian U(1) toy model defined by
the Lagrangian (we use notations introduced in Sec. M)

) . 1 y
LIA, ¢] := [(8, — ieA,)d]T[(0" — ieAM)¢] — V(¢) — ZFWF“ , (1.1)
where ¢ is C-valued, F,, is the field strength tensor associated to A,, V(¢) =
”72¢T¢ + %(¢T¢)2, and the actions of a gauge transformation with v = e‘* € U(1)
(U(l)—valued smooth map) are ¢7 :=~7'¢ and A} = A, + Ly =19,y = Ay — 10,0
Let ¢ = pe™ with p := |¢|, so that under the gauge transformation v one has
pY = pand x” = x — a. The Lagrangian can be written in the (p, x) field variables:

1
LA, p, x] = (0up)(0"p) + p* (Dux — AL) (0" x — eA*) =V (p) — 7P

The purpose of the usual gauge fixing procedure for the so-called “unitary gauge” is
to remove any occurrence of the x field. To do that, the idea is to perform a gauge
transformation with - such that o = x. But, for any gauge transformation p — p,
X—=XxX—o, A=A, — %Bua, the expression 0, x — eA,, transforms into itself (as
expected). So, there is no gauge transformation that can remove the y field.?

The DFM is strongly related to this line of reasoning and its success, for the same
problem, relies on the fact that it considers the right objects in the right spaces,
and interprets some usual relations in a different manner (gauge transformations
for instance).

The first step consists in identifying in the model the dressing field « which
takes its values in U(1) and which transforms as u? = y~1u. With the previous
notation, a natural candidate for u is u = e'X, that is, we write ¢ = pu, so that
u is a local expression in terms of the components of ¢. Here, we see that u looks
very much like the v proposed in the unitary gauge fixing procedure. The second
step of the method is to dress all the gauge fields with u, using the usual relations
for the action of the gauge group, but with u instead of . Here again, it looks like
we perform a gauge transformation on all the fields. But, as explained in detail in
[1L 2], the dressing field u is not an element of the gauge group so that the dressing
of all the fields by u cannot be a gauge transformation (it is a redistribution of the
degrees of freedom in new field variables). The dressed fields for the A,’s are the
fields a, = A, + éu‘lauu and the dressed field for ¢ is p. Since this change of
variables in the space of fields is invertible, one can write the Lagrangian in terms
of these dressed fields:

L.l = (0 ~ iea, )l (0" — iea)o] = V(p) — 3™

bTt is customary that only a “partial” gauge transformation with a = x applied only to the fields
Ay, but not to the field x, could do the job. This is clearly not a satisfactory procedure.
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where f,,, has the same expression in terms of the a,’s as F,, in terms of the A,’s.
In this Lagrangian, the y field has disappeared as desired. Note that a change of
field variables yields a Jacobian in the functional integral. Two examples of such
Jacobians are computed in

One way to understand why the procedure works with the DFM but not with
the gauge transformation is to remember that the gauge transformation defined by
v cannot change the status of the objects, in particular the fields A, which still
define a connection 1-form. By definition, a gauge transformation preserves field
spaces (since a field space is precisely defined to support a specific action of the
gauge group, see Sec.[2]). On the contrary, in this example at hand, the dressing field
u in the DFM, which captures the same degrees of freedom as 7, amounts to defining
objects (the dressed fields) belonging to new field spaces. The fields a, no longer
define a connection 1-form since they form a gauge-invariant object (they belong to
a field space supporting the trivial action of the gauge group, see the notion of field-
composer in Sec. [Z2)). In the terminology to be defined in Sec. 2 v and u belong
to the same functional space, as U(1)-valued functions, while they do not belong
to the same field spaces since they do not support the same action of the gauge
group. It is the same for the functions A, and a,. So, by its very definition, a gauge
transformation cannot hide the field x (invariance of the combination d,x — eA,,),
while the approach of the DFM is to “compose” the A,’s and x functions into
the new fields a,. This is why x disappears in the dressed Lagrangian, as part of
the a,’s.

2. The Framework

The usual modern mathematical approach to (classical) gauge fields makes use of
fiber bundles. Here, as explained in the Introduction, we will not use this frame-
work, since we will only consider local fields (on the space-time manifold). Indeed,
one of the main results concerning the DFM, [Il Proposition 2], tells us that the
existence of a global dressing field with values in the whole structure group implies
the triviality of the principal fiber bundle.® So, instead of relying on fiber bundles to
identify the field spaces, we will rely on the action of the gauge group on local fields
defined on open subsets U of the m-dimensional space-time manifold M. Working
with such local fields will circumvent the global triviality constraint and permit to
make direct contact with the structures used in functional integrals of QFT. Note
that U can be M itself: in QFT, one has M = R* and all the fiber bundles are
trivial (contractive space) so that one can take U = R%.

2.1. Functional spaces, field spaces and gauge group actions

Let us denote by G the structure group of our model, with Lie algebra g. For any
open subset U of M and any representation vector space F of G, let us introduce

¢In the paper, we focus ourselves on the whole structure group and not possible subgroups.
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the following local functional spaces:
Gy ={9:U—=G}, Ay:={a=(au)/a,:U—g}, Ey:={¢:U—E}

where all the maps are smooth. The space Gy; is a group when equipped with
the natural group law inherited from the group law of G and, in the same way,
E; is a vector space. We emphasize that these spaces are equipped only with
their functional space structure (which depends on the target space, and on which
topological structures could be added, but this is outside the scope of this paper).
The main point of our approach is that these spaces will be equipped with different
actions of the gauge group.

Let us then first define the local gauge group Gy as follows: it is Gy; as a group
(and so as a functional space), equipped with the right action of (the group) Gy,
defined by 79 := ay(y) := g 'vg for any g € Gy and v € Gy. It is important
to distinguish the two mathematical structures: G; is a group, and Gy is a group
equipped with an action of the group G;;. Note that this action induces, with the
same formula, an action of the group Gy on itself. It is this action that we will
consider in the following.

As pointed out before, we equip now some functional spaces with right actions
of the group Gy, and we call them field spaces. It will be important to remember
that different field spaces can have the same underlying functional space, since the
actions can be different. The first field space at hand is Gy for which the functional
space is Gy; equipped with the above action a. We will use special notations for
the following field spaces?:

e The field space of (local) connections Ay is the functional space Ay equipped
with the action A — AY :=~y 1Ay 4+ ~~1dy for any v € Gy and A € Ap.

o The field space of E-valued fields Ey is the functional space E; equipped with
the action ¢ — ¢7 := £,-1¢ for any v € Gy and ¢ € &y, and where / is the
representation of G on E (i.e. a left action).

e The field space of invariant connections If} is the functional space A;; equipped
with the trivial action B — B? := B for any v € Gy and B € Iﬁ.

e The field space of invariant E-valued fields I is the functional space E,;
equipped with the trivial action ¢ — ¢ := 4 for any v € Gy and ¢ € I{JE.

o The dressing field space Dy is the functional space Gy; equipped with the action
w— uY =~y for any v € Gy and u € Dy.

e The undressing field space Dy is the functional space Gy, equipped with the
action v — vY := vy for any v € Gy and v € Dy.

Let us explain how these definitions are related to the usual approach on gauge
field theories using principal bundles and associated bundles. Indeed, our approach
can be considered as a local version of this usual approach and the previous defini-
tions are obviously strongly related to this approach.

dWherever possible, we will also try to use different notations for the elements of these spaces.

2550029-6



Gauge fizing in QFT and the dressing field method

Let P = P(M, Q) be a G-principal bundle over the (space-time) base manifold
M, and let F be a space equipped with a left action of G denoted by (f, g) — p(g9)f
for any f € F and g € G. Then the space of (smooth) sections of the associated fiber
bundle P x, F' is isomorphic to the space of (smooth) equivariant maps ¢ : P — F'
satisfying ¢(p - g) = p(g~1)é(p) for any p € P and g € G, where p - g is the right
action of G on P. It is well known that the gauge group G of P is isomorphic with
the space of sections of the associated bundle P x,, G for the action ay(y) = g~ 1yg
defined above. Let us denote by ¥ : P — G a generic element of the gauge group
considered as an equivariant map (for the « action) P — G. Then, with previous
notations and identifications, the gauge group action ¢ + ¢¥ on sections of P x o F
takes the form ¢¥(p) := p(¥(p)~1)o(p).

Let U C M be an open subset such that Py ~ U x G and let s : U — Py be
a trivializing section. For any equivariant map ¢ : P — F, define its local section
v = s*¢ over U and let v := s*(¥). Then the gauge group action at the level of
local sections takes the form o — ¢” with ¢7 = p(y~1)e. In particular, the action
of the gauge group on itself takes the form presented above. In the same way, we
recover the action on (local) connections A € Ay.

As expected, there is then a strong relation between the expression of the action
of the gauge group on local fields and the field space in which these local fields
belong, since the action determines p, which in turn determines the associated fiber
bundle. For instance, let us consider the dressing field space D. The left action of
G to consider is the left multiplication on G, Ly(¢") = g¢’, considered as an action
of G (group) on G (fiber). Then, a dressing field is a local section of the associated
fiber bundle P x j, G, and it is well known that P x ;G ~ P. Since a global section of
P can only exist if and only if P is trivial, we cannot expect such sections (dressing
fields) to be globally defined except in the trivial situation P = M x G. But at the
local level, local dressing fields can always be considered.

So, working at the local level (over U for which Py is trivial) amounts to con-
sidering “local sections” which are always well defined, and identifying the actions
of the gauge group allows to understand the global geometric structures to which
these fields (should) belong. This is why in this paper we have chosen to consider
gauge fields through this approach. In particular, we will not take interest in the
“changes of trivialization”, which are the usual way to identify the bundle struc-
ture on which the fields live. Our main focus is on the actions of the gauge group,
considered itself as a field space of local sections.

To simplify the presentation and when the open subset U is fixed, we will omit
it in the notations.

2.2. Field-composer and the dressing field method

In [I], we used a lot the notion of “composite fields”. We would like to clarify its
meaning in light of this approach. The formal definitions and developments pre-
sented below may seem cumbersome at first sight, but they are in fact quite useful
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(and almost necessary) for correctly interpreting the various structures involved in
the gauge-fixing process. Moreover, these structures are proving useful and efficient
for carrying out certain calculations.

In the following, we will use generic notations for functional spaces and field
spaces. Let F be a functional space. Denote by F (respectively, Z*') this functional
space equipped with an a priori nontrivial action of G (respectively, with the trivial
action of G). This nontrivial action (physically interesting and useful) is extracted
from the gauge field model at hand. F is then the usual space for a gauge field,
for instance, A or £ given above. In contrast, the trivial action defining Z% will
arise from the DFM. Hence, the field space F is the cornerstone of forthcoming
constructions.

When necessary, field spaces of type F will be distinguished by lower indices.

Definition 1. Let Fi,..., F,4+1 be some generic field spaces on which the actions
of the gauge group are denoted by F; > ¢; — ¢ for any v € G. A field-composer
isamap C: Fy X -+ X F,. = Fpry1 which is local in terms of fields and satisfies the
G-equivariance

C(¢7,...,97) =Clo1,..., )"
for any ¢; € F; and v € G.

Note that for » = 1, a field-composer is just a G-equivariant map between two
field spaces.

Let us write C(¢;) = C(¢1,...,¢r). Then one has C(¢]'"?) = C(¢]')2 =
C(¢;)" 72 for any 1,72 € G since ¢;' 7 = (¢]*)2.

Recall that the locality of C means that the value of C(¢;) at any (space-time)
point depends only on the values at that point of the fields ¢; and a finite number
of their derivatives.

Using the generic notations, let GA : F x G — F be the “gauge action trans-
formation” map which associates to (¢, g) € F x G the element in F which would
formally correspond to the gauge action of g on ¢ if g were in G and  in F (the
field space equipped with a nontrivial action of G). Since GA is the functional
expression of a right action, we have

GA(GA(%gl),gz) = GA(%QL‘D)

for any ¢ € F and ¢g1,92 € G.

Proposition 2 (Declinations of GA as field-composers). For the two decli-
nations of F as field spaces F and IT together with the three declinations of G as
field spaces G, D, and D, the gauge action transformation map GA induces the only
three field-composers GT : F x G — F (“gauge transformation”), DC : F xD — It
(“dressing composer”) and UDC : I x D — F (“un-dressing composer”).
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Proof. For any ¢ € F and 7,7 € G, one has GA(¢",7") = GA(GA(¢,7'),
YY) = GA(GYY ) = GA(¢,7Y) = GA(GA(4,7),7'), so that GT
(¢",7") = GT(¢,7)".

For any ¢ € F, u € D and v € G, one has GA(¢7,u?) = GA(GA(¢,7),y tu) =
GA(¢, vy tu) = GA(¢,u), so that DC(¢”,u?) = DC(¢,u) = DC(¢,u)".

For any ¢ € ZF, v € D and v € G, one has GA(¢7,v7) = GA(¢,vy) =
GA(GA(¢,v),7), so that UDC(¢7,v7) = UDC(¢,v)".

It is easy to check that these three field-composers are the only ones we can
construct with the proposed field spaces. O

Note that since G is a group, GT inherits the relation GT(GT(¢,7),7') =
GT(¢,7v') from GA. The proof of the following proposition is straightforward.

Proposition 3. The inverse map 1 : G — G, t(g) := g~ ! induces three field-
composers (G-equivariant maps) t: G — G, 1: D — D, and v : D — D.

The multiplication map p: G x G — G, u(g1, g2) := g1g2 induces the five field-
composersu:gxg%g,M:QXD%D,u:ﬁxQ%@,u:Dx@%g, and
p:DxD — IC where IC is the functional space G equipped with the trivial action
of G.°

From these properties, we see that the group structure of the functional space
G can be lifted to a group structure on the field space G (i.e. a group law that is
compatible with the action of G on itself). From now on, the maps p and ¢ will be
dropped out to the benefit of their respective realization.

From Proposition Bl for any two dressing fields ui,us € D, there is a unique
~ = p(ug, e(uz)) = ulugl € G such that us = v~ 'w;. This implies that D has a
unique orbit for the (free) right action of G on D. A similar result holds for the
right action of G on D.

Lemma 4. For any u € D (respectively, v € D), the dressing field map DC,, :
F — IF (respectively, the undressing field map UDC, : IF' — F) defined by
DC,(¢) := DC(¢,u) (respectively, UDC,(¢p) := UDC(,v)) is an isomorphism,
but is not G-equivariant. Explicitly, for any v € G, one has DC,(¢7) = DCyy(9)
(respectively, UDC,(¢)Y = UDCyy (¥)) for any u € D and ¢ € F (respectively, any
veED and p € IF).

This proves, as expected, that generically F and Z* are not isomorphic as field
spaces.

Proof. It is easy to check that the inverse map for DC, is UDC,(,. These maps
cannot be G-equivariant since the equivariance of DC (respectively, UDC) requires

©We restrict ourselves to the three field spaces G, D and D as source spaces.
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to change at the same time ¢ and u (respectively, ¢ and v) as seen in Proposi-
tion [Z here, one has DC,(¢7) = GA(GA(¢,7),u) = GA(¢,yu) = DCyy(¢) and
UDCy(¢)” = GA(GA(¢,v),7) = GA(h,v7) = UDCoy (¢). O

The DFM has been formalized in [I] in terms of fiber bundles from ideas devel-
oped in [6]. Let us summarize part of this method in this approach.f With the
previous notations, consider a gauge-invariant Lagrangian L(¢1,..., ¢, ), and sup-
pose there exists (in the model) a natural way to define a field v € D. Then, one
can perform a change of variables from the field spaces F; to the field spaces ZF" by
using the dressing field map DC,,, which associates to ¢; the gauge-invariant field
¢ := DC(¢;,u) € ZI'. The Lagrangian can then be written in terms of the ¢%’s, on
which all the actions of the gauge group G are trivial, so that the G is not relevant
anymore in the model and can be thus ignored. It is explained in [Il [6] that the
so-called unitary gauge in the electro-weak sector of the SMPP, whose purpose is
to get rid of the SU(2)-gauge symmetry, is simply such a change of variables for a
natural dressing field in the model.

Note that the DFM, as a change of variables in the field spaces, is invertible, at
least in a formal way, since one can “undress” all the fields ¢}*’s using the un-dressing
composer UDC with the undressing field v = ¢(u) (application of Lemma [E]). Our
“formal” reservation is due to the fact that such an undressing field may not be
“natural” to define for a model without symmetry! In fact, some examples of this
procedure have been described in the literature, where the un-dressing composer
was used to add an “artificial” gauge symmetry in some models where some good
candidate for an undressing field v could be proposed. What is a “good candidate”
has to be defined in each situation. For instance, it is explained in [I] how to promote
in such a way a Proca-like Lagrangian describing a gauge-invariant massive vector
field A, to a Stueckelberg Lagrangian which implements a U (1)-gauge symmetry.

Thus, besides the two field-composers GT (gauge transformations) and DC
(dressing), the undressing composer UDC defined in Proposition 2l might also have
a role to play in gauge field theory.

3. Gauge Fixing and Dressing Fields

Let us now show how the formalism introduced in the previous section can be used
to revisit the gauge fixing procedure in QFT in the light of the DFM.

3.1. Gauge firing in QFT as an instance of the DFM
A gauge firing map is a map F : F} x --- X F;. — V where the F}’s are functional

spaces underlying the field spaces F; of the model and V is a functional space with

fIn [1], the method was developed in a very general approach: for instance, the symmetry group
to be removed was not necessary in the whole group G, but a subgroup of it. Here we will not
consider this situation.
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values in a vector space V. In order to simplify the notations, let us write F(ip;) for
F(o1,.--50r)-

Definition 5. Given a gauge fixing map F, its associated gauge fizing condition is
the gauge fixing equation F(GA(¢;, g)) = 0 to be solved for g € G while the ¢; € F;
are fixed.

Note that, at this point, we only specify the field spaces for the ¢;’s. Concerning
g € G, we cannot yet determine its field space and we do not know to which field-
composer the gauge action transformation GA will have to be promoted in the
equation F(GA(¢;,g)) = 0. In order to determine this field space, we will need to
identify the action of G to which g is subjected. In order to do that, we consider
ideal gauge firing maps, see e.g. [8, right after Eq. (3.327)] and [9], p. 361].

Definition 6. An ideal gauge fizing map is a gauge fixing map F such that, for
any ¢; € F;, there is a unique g € G which solves the gauge fixing equation. This
implies that there is a well-defined one-to-one map F: F; x --- X F. = G.

The Gribov ambiguity raises the question of the existence of such ideal gauge
fixing maps [10, II]. It is out of the scope of this paper to get involved in that
difficult problem. We will adopt the usual “practical” point of view that the gauge
fixing maps of interest are ideal.

For an ideal gauge fixing map, we propose the following procedure to determine
the action of G on g. Let us consider a configuration (¢;) with ¢; € F;. Since
the gauge fixing map F is ideal, there is a unique g := 13(@-) € G such that
F(GA(¢i,g9)) = 0. Let v € G and let us use the notation ¢} := GT(¢;,7y) =
GA(¢i,v) (these are true gauge transformations). Then there is a unique ¢’ :=
F(¢}) € @ such that F(GA(¢},¢')) = 0.

Assumption 7. If that makes sense (i.e. if it is an action), we define the action of
~ on g as the map g — ¢/, so that, with our usual notations, GA(g,v) = ¢” :=¢'.
In other words, the action is such that the map F is G-equivariant, namely, F(¢]) =
F(¢i)7.

We can now establish the main result of our approach.

Proposition 8. The field space of the element g € G which solves the ideal gauge
fizing condition F(GA(i,g)) =0 is D.

From this proposition, we can now deduce that the gauge action transformation
GA in the previous formulation is the field-composer DC, that F is promoted to a
map Z1 x- - - x It — V, that the gauge fixing condition looks like F(DC(¢;,u)) = 0
to be solved for uw € D while the ¢; € F; is fixed, and that F: Fi1 X - xF.—D.
Beware that F looks like a field-composer but the locality is not secured as it will
be shown in some examples below.

Proof. The proof is quite straightforward: one has to solve for ¢’ € G the equation
F(GA(¢},g')) = 0. Note that GA(¢;,9") = GA(GA(¢:,7),9') = GA(¢i,7g'). Since
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the gauge fixing map is ideal, if g € G is the unique solution of F(GA(¢;,g)) = 0,
then one must have g = v¢g’, which implies GA(g,7) = g7 = ¢’ = v~ 'g. This is the
action of G on G defining the dressing field space D. O

Note that we depart from the usual way to look at the gauge fixing procedure,
in which g is considered as an element of the gauge group. This usual identification
may have its root in the fact that the most obvious action used in gauge field
theories on the functional space G is the one defining the gauge group G. Indeed,
the gauge fixing condition is a local (and possibly nonlinear) differential equation
in terms of the local functions (¢;,g) to be solved for g. But, isolated from any
other (formal) considerations, this equation alone does not tell us which field space
g must belong to, since its structure only constrains the functional space G. It is
then quite natural to implicitly assume that the action to which g € G is subjected
is the one defining g as a local version of an element of the gauge group G. All
reasonable physicists are inclined to associate such a map g with a (local) gauge
transformation.

Our result challenges this approach since we use a natural criterion to determine
the action of G on the functional space G. Obviously, the requirement in Assump-
tion [0 that F be G-equivariant, could be questioned. However, we consider this
condition to be the simplest one which respects the spirit of gauge fields theories,
where the gauge group is the central object from which it is natural to define the
other structures. It is difficult to ask for another natural condition for F which could
take into account the actions of the gauge group.

3.2. The FPGFP revisited

Let us now show how the Faddeev—Popov method adapts to our framework. Let us
use ¢ for all the fields in the model, including the gauge potential, the scalar fields
and the fermion fields. Denote by S(¢) the action functional, G the gauge group
and F the field space of all the fields in the model.

The usual method requires three hypotheses:

(1) The action functional S(¢) is gauge-invariant.

(2) In our context, the integration along the field space F can be commuted with
the integration along the gauge group G.

(3) Denote by d[¢] the measure on F, then for any functional P(¢), one has, for
any gauge transformation v € G,

/ dGIP($7) = / d[6P(4). (3.1)
F F

This relation is equivalent to the requirement that the measure d[¢] is gauge-
-1

invariant since [ d[¢]P(¢7) = [d[¢" ]P(¢).
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The FPGFP relies on the “trivial” expression

1= / Ay Arp (6,213 (F(67), (3.2)
g

where App[¢,7] is the functional determinant of the functional derivative of
v + F(¢7) along v (at fixed ¢). In the notations given in this is
the determinant of the linear map dg(F o GT)[¢,v] : T,G — Tg(¢+) V.. One can for-
get for a while about field spaces and look only at the underlying functional spaces.
Then one has to compute the linear map dg(F o GA)[¢,7] : T,G — TppnV.
Let ¢ — v(t) be a smooth curve in G such that v(0) = v and 4(0) = ¥ € T,,G.
Then, for 1 := GA(¢,7), one has F o GA(¢,v(t)) = F o GA(GA(y,y~1),~7(t)) =
F o GA(¢,7717(t)) so that dg(F o GA)[¢,7](3) = £ (F o GA)(¢, 7 v(t))je=0 =
dg(F o GA)[¢,e] o T L,-1(7). Taking the determinant, one gets

AFP [¢,’y] = AFp[w, e] Det(Tva—l) = AFP [’L/J] Det(Tvafl), (33)

where e € G is the unit element and App[¢p] := App[t),e]. This relation is not
often mentioned in the literature: it can be found for instance in a similar form as
[12, Eq. (15.5.17)].8

One can now insert ([3:2)) into

2= [ o= = [ o) [ an)aeefo. 1w

/ dié] / A1) Arp[6,16(E @)@ by item [T]
F g

/ [ / d[8] Arp (6, 76(F(E)eS@ by item [Z]
g F

/ d[y] Det(T Ly-1) / d[¢] Arp[Y]5(F (1))e'5)
g F
by item and [B3), with ¢ = ¢7. (3.4)

The steps that usually follow in the FPGFP will not concern us.
We adapt the usual hypotheses to our framework in the following way. Let F
be a functional space. We introduce five hypotheses.

(Hyp. 1) The action functional S and the gauge fixing map F are defined on F.
(Hyp. 2) For any g € G and ¢ € F, one has S o GA(p, g) = S(p).

€In ([3.2)), the § function selects a unique o such that 1o := GA(¢,v0) satisfies F(1)9) = 0. Then,

using (B3)) for this vo, B2) gives App[tho] ' = Det(Ty, L.-1) Jg d[v]8(F(¢7)). Up to the missing
factor Det(T%, L., —1), this relation is often used in the literature as a definition of App[¢].
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(Hyp. 3) The measure on any field space is the measure on the underlying func-
tional space. Denote by d[p] the measure on F, then for any functional
@ — P(p) on F, one has, for any g € G,

/ dlo)P o GA(p,g) = / Aol P(p). (3.5)
F

£

(Hyp. 4) In our context, the integration along F can be commuted with the inte-
gration along G.

is not a strong restriction, since S is a local expression on F, which
turns out to be a local expression on F (by forgetting about the action of G).
Concerning F, this was already in its definition.

is equivalent to the usual hypothesis (1) if one goes from field spaces
to functional spaces. This is possible since the invariance of the action is proved in
a formal way which only involves the “functional form” of the gauge action, which
is encoded into the gauge action transformation GA appearing in our hypotheses.

means that the measure on a field space is not related to its defining
action, but only on the underlying functional space equipped with the gauge action
transformation GA as required in (3X). Finally, Eq. (835]) can be related to the
standard equation (BI)). Indeed, the fulfillment of (3.I) can be performed at the
functional level, requiring only the explicit form of the group action. The functional
equivalent of ([BI]) can be written as [, d[¢]P(¢?) = [} d[¢]P(p), which is B.5)
since p? = GA(y, g).

Because of the measures on G and F are the measures on G and F
respectively, so that is equivalent to the usual hypothesis

Our hypotheses, written at the level of functional spaces, are also true on field
spaces and field-composers on field spaces, when these expressions make sense. For
instance, in the following, we will use DC in place of GA for the proper field spaces.

Let us now write the FPGFP in our framework. will allow to consider
S oDC(¢,u) and F o DC(¢, u) for any ¢ € F and u € D, since DC(¢,u) € F (since
DC(¢,u) € ZF).

Because the gauge fixing map F is ideal, one has

| dluldwelo. s o DCo.0) = 1.
D
where App[p,u] is the determinant of the functional derivative dp(F o DC)[¢, ul,

as in the usual method. We insert this equality into the expression we want to
evaluate:

— eS(e) — U U o u))eS (@) .
Z. /F dié] /f i) /D d[u] App 6, ul6(F 0 DC(6, u)) (3.6)

- / d[¢] / d[u] App [, u]§(F o DC(¢,u))e’SPC@ by (Hyp. 2)
F D
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- /D dJu] /f d¢) A 6, ul3(F 0 DC(6,u))e’SPCOw by (Hyp. 4)

= / d[u]Det(TuLufl)/ d[p) App[1h])8(F (1)) )
D

IF
by (Hyp. 3) and (3.3) with ¢ = DC(¢, u). (3.7)

At this point, sticking to the usual computation in the FPGFP, one can factor
out the integration of uw along D, and consider only the remaining integration on
the space of invariant fields. The action functional S, initially expressed on F, is
now expressed on I after the change of field variables DC,, : F — Z% where u is
the field variable of the first integration along D (our allows to do that).

Note that, looking at the previous computations, our hypotheses can be refor-
mulated for field spaces in the following way:

(Hyp. 1) The action functional S is defined on F and Z% in the same functional
way.

(Hyp.” 2) For any v € D and ¢ € F, one has S o DC(¢, u) = S(¢).

(Hyp.” 3) The measure on I is the push-forward of the gauge-invariant measure
on F by DC, : F — ZF for any u € D and it is independent of u € D.
For any functional ¢ ++ P(¢)) on Z%', one has

/ d[¢]P o DC(¢,u) = / d[y)P(y) for any u € D.
F IF

(Hyp.” 4) In our context, the integration along F can be commuted with the inte-
gration along D.

In the measure on Z¥ is precisely defined. Let us show that this
measure does not depend on the dressing field u € D used to define it through the
push-forward if and only if item of the usual hypotheses holds.

Let us fix u € D. By its very definition, the push-forward measure d,, [¢] defined
on Z* along the map DC,, from the measure d[¢] on F is such that, for any func-
tional P on Z¥, one has [, du[¢]P(¢) = [ d[¢]P o DCy(¢). Any other dressing
field v’ € D is related to u by v’ = ~u for a unique v € G. Using Lemma [ and

(1), one gets
|, detlp@) = [ digpoe.o) = [ depepe.e)

F
:/ d[¢]PoDcu(¢):/ du [P]P (1))
F z*

so that dy/[¢] = dy[].
Conversely, if the measure d,[¢] defined on Z% fulfills d,/[¢)] = dy[¢] for any
u,u’ € D, then, on account of previous notations, set Q(¢) = P o DC,(¢). The
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above computation and the hypothesis on d[t)] then show that [, d[¢]Q(¢) =
JFd[¢]Q(¢") for any v € G, which is item|[(3)]since Q can be any functional (P — Q
is invertible using UDC,,-1).

In the usual approach, the action functional is gauge-invariant and it is always
evaluated on the same field space. On the contrary, in our framework, thanks to
the functional gauge invariance [(Hyp. 2)|or to [(Hyp.” 2)| it is first composed with
the dressing field map DC, and then expressed on Z¥.

Since the Lorenz gauge is mainly used in standard Faddeev—Popov calculations,
let us consider the gauge fixing map F(A) := 0*A,, for any A € A (here V. = Lie G).
It is well known that this gauge fixing map is not ideal, but let us assume neverthe-
less that it is, as assumed in many physical developments, as already quoted [8| right
after Eq. (3.327)] and [9, p. 361]. Then, the gauge fixing condition F(DC(A,u)) =0
takes the form of a nonlinear second-order differential equation to be solved for
u € D:

u (0O u) + (0" u 1) (Ouu) + (0Mu" M) Ayu +ut AL (Opu) +uH(OF AL )u = 0.

It is well known that the solution is a nonlocal expression u(A) = F(A), that is, it is
expressed in terms of A and (at least symbolically) an infinite number of derivatives
of A. So, for the Lorenz gauge fixing map, the map F defined in Definition [ is
nonlocal.

This differs from the usual examples illustrating the DFM [T, 2] [0, T3HI7] where
the dressing field u was always defined in a local way in terms of the fields in the
model. This locality plays a crucial role in the debate between the artificiality versus
the substantiality of gauge symmetries [7] (see also [I8, Chap. 5]).

We will see in Sec. [ that the nonlocality of u is also a characteristic of the Ry
gauge fixing map, and that it disappears in the limit £ — oo (the so-called unitary
gauge fixing condition).

3.3. Gauge firing in QFT as a change of field variables

The previous interpretation of the FPGFP as an application of the DFM is not
satisfactory from the original viewpoint of the dressing approach, which consists in
a mere change of field variables. Let us see how such a change of field variables can
be implemented in Z defined in ([B.0) in order to compare with the previous version
of the FPGFP.

Let us suppose as before that the gauge fixing map F is ideal. We will use
the following maps: let DCF : F — ZF be defined by DCF(¢) := DC(¢, F(¢)) (see
Definition[8) and let F : F — V be defined by F(¢) := FoDC}?(@ = FoDC(¢, §(¢))
for any ¢ € F.

Then, any ¢ € F defines a unique u = F(¢) € F(F) C D such that F o
DC(¢,u) = 0. This u is used to dress the fields ¢ by defining the invariant field
¥ := DC(¢,u) = DCF(¢) € F~1(0) C ZF. One gets a change of field variables
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F 3¢ (u,v) € F where
— (F x DCF)(F)
:{(uw)erIFH'(be]:stu— F(¢) and ¢ = DCF(¢)}
c F(F)xF1(0)cDx 1.

Performing this change of field variables in the functional integral defining Z gives

_ eiS(¢) — u w. b d)etS®) .
z= /F (4] / dluld[]J (u, ; 8)e 5@, (3.8)

where J(u, 1; ¢) is the functional determinant (the Jacobian) of the change of field
variables C' : F — F, C(u, ) = ¢ := UDC(2p,u~!). The computation of J(u, ;)
relies on the computation of the functional differential dC' (see[Appendix A)). Since
the gauge fixing map F : I — V is ideal, the number of degrees of freedom in V,
that is dim V, is larger than the number of degrees of freedom in G, that is dim G.
Let us assume that dim V' = dim G, so that there is no over-determination of u € G
by F.

The bijective map F : F — F(F) C D satisfies the constraint F( ) =
DC(¢,F(¢)) = 0 for any ¢ € F, so that, for any X € Ty F, one has dF[¢](X )
By the composition law, one gets 0 = dF[¢](X) = dF[DCF(¢)](dDCF[¢](X)) h11e
dDCF[6)(X) = d#DC[6, F(@)](X) + dpDC[6, (9))(dF[6](X)), so that

0 = dF[DCF(¢)](d#DCl¢, F($)](X)) + dF[DCF(¢)](dpDCl[o, F(¢)] (dF[¢](X)))
= dz(F o DO)[¢, F(¢)](X) + dp(F 0 DC)[¢, F()] o dF [¢](X).

In the FPGFP, it is assumed that, for any ¢ € F, dg(F o GT)[¢,v] : T,G —
TrogT(s,,)Y is invertible, since its determinant is App[¢”]. This invertibility is a
technical property at the level of functional spaces, so that it can be assumed in
our framework as well. This implies the invertibility of the map dp(F o DC)[¢, u] :
TuD — Tyopc(s,wV for any ¢ € F and u € D (the hypothesis dimV = dim G
applies here). This entails

dF[¢](X) = —dp(F o DC)[¢,u] ! o d#(F o DC)[¢, F(¢)](X).

This expression gives the functional variation du[¢] of u = F(¢) along ¢ in the
change of field variables F > ¢ — (u,®) € F. Now, one can look at the variation
dy[¢] of » = DC(¢, F(¢)) in this change of field variables. One has

dy[¢](X) = d#DC[¢, F(4)](X) + dpDCl[o, F(¢)] (dF[¢](X)).

The determinant J(¢;u,) of the linear map (du(¢],dy[¢]) : TyF — Ty F C
T.F(F) x TyF~10) C T,D x TyI¥ (with u = F(¢) and ¢ = DC(¢,F(¢))) is the
inverse of the Jacobian J(u,; ¢) we have to compute in (B.8). This determinant
depends on the three functional differentials d #DC, dpDC and dF. The two first
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depend only on the field content of the model (recall that DC is a gauge-like trans-
formations of the fields) while the last one is the only one which depends on the
gauge fixing map F.

Note that this approach is computationally impractical since it requires to char-
acterize the space F C D x I, which is not an easy task at first sight, especially if
F is defined in terms of some differential operator. It requires also to evaluate the
Jacobian J(¢;u, 1), and then its inverse J(u,;¢). In a practical approach, it is
easier to rely on the FPGFP which has proved to be very effective. Indeed, for the
FPGFP the spaces on which the integration is performed turn out to be field space
D x %', while in the displayed approach the integration must be performed on the
subspace F C D x ZF which is difficult to characterize. Moreover, the determinant
to compute, App[t], is quite manageable in the context of QFT when one uses the
usual trick of the Berezin integration along Grassmann field variables.

3.4. Field variables dependence on the gauge firing map

In the two computations of the functional integral presented above for Z, the main
step is the change of field variables F 3 ¢ — (u = F(¢),1) = DCF(¢)) € D x IF
defined in Sec. B3l It is explicit in (B8] but it is only implicit in B1) since the
Dirac d-function selects precisely ¢ = DC?((ﬁ).

This change of field variables depends on the ideal gauge fixing map F (in fact,
it is defined by it through the DFM). Let us understand how this dependence is
carried forward onto the invariant field 1. Let us consider a parametrized family of
ideal gauge fixing maps F. such that Fg = F. For any ¢ € Z%', let us define

dF.(¥)

PIR() = T

o © TV
A simple choice for such a family is for instance to consider v € V and F.(¢)) =
F(1) 4 ev, for which vp(4) = v is constant.

Let us fix ¢ € F and define u, := F\e(gb) and uy, = %\5:0 € TyD. Then, one
has F. o DC(¢, ue) = 0 for any e. Upon taking the derivative along € at ¢ = 0, one
gets v|p(y) +dp(FoDC)[¢, ul(u),) = 0 with u = ug and 1) := DC(¢, u). We assume,
as before, that dp(F o DC)[¢, u] is invertible which yields

Upy, = —dD(FODC)[¢,U]_1(U‘F(¢)). (39)

Let us define the tangent vector & := T, Ly, —1uy,, € TcD, and write ue = L,Ue(€) =
uUg¢(€) where L, is the left multiplication by u in G, Ug(e€) is a curve in D with
Ue(0) = e, and dUdge(E)k:o = ¢ Note that under a gauge transformation, Ug(e),
and so £, are invariant since u supports on the left the entire right action of G

(u” =~""u).

LOne may think of Ug(€) as the curve e¢.
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Let us consider now the family of dressed fields 1. := DC(¢, u.) (with ¢ = 1)

and le === € . Wi e previous parametrization, one gets
d let ¢ e e—o € TyI". With th i trizati get

3¢ty = —dpDC[g, u] o dp(F o DC)[h, u] " (vr(y)) = dpDCg, u] 0 Te Lu(€).

(3.10)
One can introduce a second parametrization along the gauge group as e := u.u "' =
uUg(e)u~t € G. Then & := L w0 = Ady € € LieG = T.G and ¢e = DC(¢, 7eu) =

DC(GT(¢,7e),u). Under a gauge transformation by v € G, ¢ transforms as £ —

Ad,-1 & Denote by 55¢ = dgGT[o, e](§) the infinitesimal gauge transformation of

¢ along é . Then one gets another expression for d¢9:

Sevs = dDC[6, u] (3c0). (3.11)

In B.II), since (55(;5 is an infinitesimal gauge transformation, d¢1 can be understood
as an infinitesimal version of the dressing at (¢,u) applied to §§~¢. In order to
fully understand BI0), let us forget about field spaces and look only at their
underlying functional spaces. Then one has to compute the derivative along e of
GA(¢p, uUc(€)) = GA(GA(¢, u), Ue(€)) = GA(¢), Ue(€)), which amounts to

Ot = dgGA[Y, €] (€). (3.12)

As a functional relation, this expression depends only on v and &, and not on ¢
and u (this was not obvious at first sight in (8I0)). It is the functional expression
of an infinitesimal gauge transformation of ¥ along £. But note that both ¢ and &
support trivial actions of the gauge group (and so of its Lie algebra). Hence, this
functional relation cannot be interpreted as a true gauge transformation acting on
field spaces.

In other words, d¢7 in (812) has only an interpretation in terms of the (differ-
ential) geometry of functional spaces, but not in terms of the infinitesimal gauge
group actions. Nevertheless, using the DFM (and more precisely an infinitesimal
version of the dressing), it is still possible to interpret d¢9 in terms of field spaces
using the true infinitesimal gauge transformation 5§~¢ in ([BI1)) as remarked before.
A similar reasoning in terms of functional spaces yields an equivalent relation to

B9) for &:
€= —dg(F o GA)[,e] ™ (v)p(y))- (3.13)

Once again, this expression depends only on the field variable ).
The variation ¢ +— 1) 4 d¢1p does not affect the action S(¢) since it is formally
gauge-invariant.

4. R¢ Gauge Fixing and Unitary Gauge

It is convenient to change our mathematical conventions on gauge fields into more
physical ones, for instance conventions close to [19], in order to compare the follow-
ing developments to the ones in the literature.
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Here we consider the situation G = SU(n) or G = U(1). Our mathematical
notations rely on the following conventions. Let {E,} be a basis of antihermitian
elements in g = su(n) (= {antihermitian n x n matrices with zero trace}) or g =
u(1) = iR, such that [E,, Ey] = C$, E.. A connection 1-form A € A (Yang-Mills
gauge potential) can be decomposed as A = Af E,dx# = A,dz* with real fields
A, so that AL = —A,. An element v € G close to the identity can be written
as 7 = e = 1+ e*E, + O(¢?) with € = €*FE,, so that an infinitesimal gauge
transformation takes the form AS = A, + D, e+ O(e?) where Dye = dye + [A, €.

To stick to standard physical notations, we rely on the following conventions.
Let t, := iE, be Hermitian elements in g, so that [tq,t5] = iCSte. Let g be the
coupling parameter for the interaction described by G, and let A = Afit,dz" =
Ajdat = ig7'A = g7 1 A%,dx" be the physical gauge field, i.e. A% = g~' A% and
AL = A, Its gauge field strength is F,, = 9,A, — 9,A, —ig[A,, A,], that is Fjj, =
OuA, — 0L A, + gC{chZAf,. Then a gauge transformation close to the identity can be
written as y = e'®"te = 1+ia%t, +0O(a?) with a = at,. The gauge transformation
of Ais A] = YAy + ig7 v 1,, so that Ar = A, — g Dy + O(a?) with
Do = 0pa — ig[A,, a]. A gauge field ¢ € £ is subject to the covariant derivative
Dup = 0uop — igAZn(ta)qﬁ where 7 is the representation of g on E induced by the
representation £ of G on E.

The usual way to relate fields in the R¢ gauge and fields in the unitary gauge
is to take the limit £ — oo at the level of Feynman rules and to identify the
corresponding propagators with the ones obtained in the unitary gauge.

In our framework, the R, gauge and the unitary gauge can be written in terms
of dressing fields. Thanks to the DFM, the relation between fields in both gauges
is achieved through the limit ¢ — oo in the spaces of type ZF once all the fields of
the original theory are dressed via the field-composer DC. The Lagrangians in the
two gauges are thus related when taking the limit.

Let us illustrate this point with two situations.

Let us first consider the simple situation of an Abelien Higgs model with G =
U(1) defined by the Lagrangian

LIA, ¢] = (8 — ieA,)d]T[(9" — ieA*)g] — V(¢) — %FWF’“’, (4.1)

where ¢ € € (with E = C) is a C-valued field (here t; =1, n =1d, and g = ¢), and
2
V(9) = 5oto + 1(670)%.
For any nonzero real parameter £ and any v > 0, consider the R gauge
fixing map

Feve(A @) = 0"'A, —evéx € LieG,

where ¢ is written as ¢ = %eix, which defines h and . This is usually written as
the extra term in the Lagrangian:

1
FEL,v,e(Aa ¢) = _i(auAu — €U€X)2,
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The gauge fixing condition F¢ , (A%, ¢*) = 0, to be solved for u written as u = e'*,
gives the equation 0*A, — 0"9,a — evé(x — ) = 0 to be solved for a, that is

(00, — ev€)a = OMA, — evéx. (4.2)

This equation determines a unique' solution a.y¢(A,¢), and so a unique dressing
field wuepe (A, @) € D. As for the Lorenz gauge condition, aeye(A, ¢) is nonlocal in
the fields A and ¢ since one has to invert the Laplacian operator to write aeye in
terms of A and ¢.

In [I], a unitary dressing field u has been defined such that ¢ = pu (polar
decomposition) where p := |¢|. This dressing field was used to dress ¢ and A into
gauge-invariant fields and the Lagrangian written in terms of these dressed fields is
the so-called “Lagrangian in the unitary gauge”.

Taking the limit & — oo in ([{2]), makes senses if v # 0. Then one gets the
simpler equation a. (A, @) = X, that is s (A, @) = U (¢) = X for ¢ = pe’X, so
that, in the space of dressing fields, lime_ oo Uepe (A, @) = Uso(P) = u is the unitary
dressing field. Note that this limit simplifies the equation in such a way that e (@)
is now local in terms of ¢ (and does not depend anymore on A). Moreover, ()
does not depend on the choice of v # 0, as expected.

This procedure extends to a more general situation of non-Abelian fields. Let
¢ = (¢1,...,02n) be real fields subjected to a real representation £ of G = SU(N).
Denote by T, := n(t,) the real antisymmetric generators of this representation so
that the covariant derivative is D¢ = 9,¢+gA},To¢ [19, Chap. 20]. Let ,’0\\# = AT,
(note that ;&L = 73\# where T is the transpose matrix) for which E\Z = 'y’l:&l[y +
g~ 'y710,7. Consider the Lagrangian L[A, ¢] := 1(D,¢)T(D"¢) — V (¢) — 1F FH.
Let ¢o denote a fixed constant configuration of the ¢ field that minimizes V(¢) and
let us use the new field ¢ defined by ¢ =: ¢g + . For any v € G, we define the
gauge-transformed ¢ of ¢ as 7 1= £, -1 (¢ + ) — 0.

In the expansion of %(DH¢)T(D“¢), we are interested in terms in A times ®.
These are %g((?ﬂcp)ﬂaﬂqﬁo — %gqﬁg,&#(a“cp) = g(@ngp)TK\#ngO. Using integration by
parts, this term is —geT (3MA“)¢0 under the integration over space-time. The R
gauge fixing condition is chosen in order to cancel this term. As an extra term in
the Lagrangian, it is

~

FH(A, @) = —% D (0"AL — gEpTT )

with 7% := KT, for the Killing metric K of SU(N) where K, o< tr(T,T3). This
extra term is associated to the gauge fixing map defined by

o~ o~

Fego.9(A, @) :=F¢ 4 o(A )T, € LieG,
where
FE 40.0(A ) 1= OMAL — gEoTT by,
iThanks to conditions at infinity in the Euclidean space.
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The term FL(,&,gp) is nothing but K(Fg,%,g(,&,@),Fg,%,g(;&,cp)) up to a factor
which depends on normalizations when the T,’s form an orthogonal basis for K.

For any u € D, define 4 := £, € GLan(R). Then, one has to solve for u € D the
nonlinear second-order differential equation

g 19,0 0 4 g(0,a ") (0"0) + (9,0 ARG 4 4 AR(9,0) + 41 (9,AR)d

+98(og T 0™ ) Ta + g€(o5 T ™" $0)Ta — 9&(05T" b0)Ta = 0. (4.3)

Note that the last term in the LHS is zero since T* is antisymmetric. In case
the gauge fixing map F¢ 4,4 is ideal, this equation defines a unique dressing field
Ug.g,40 (A, @) € D, which is clearly a nonlocal expression in terms of the fields A and
0.

The limit £ — oo (g and ¢q fixed) of Eq. (&3] reduces to the simple family of
algebraic equations

¢eT 0 ¢ =0 for any a. (4.4)

This system of equations is the one defining the unitary gauge for a very general
model of broken local symmetries, see for instance 4, Eq. (3.2)]. This equation
defines a unique dressing field uoo ¢, (¢) € D which is local in terms of ¢ and does
not depend on A.

So, as for the case of the Abelien Higgs model, the limit £ — oo can be performed
in the space of dressing fields D as limg¢_,o0 Ug,g,40 (A, @) = Uoco,¢0 (¢) and it goes from
a nonlocal expression in terms of the fields A and ¢ to a local expression in terms
of ¢ alone. Note that (£4) implies that uso ¢,(¢) only depends on the direction of
Po # 0.

The above-mentioned limit procedures are not rigorously established from a
mathematical point of view. In the Abelian case, one can consider the Fourier
transform of the original equation ([@2]) to get an algebraic equation for which the
limit procedure is clear. But for non-Abelian fields, it requires more mathemati-
cal developments to consider the limit from Eq. @3] to Eq. [@4]). Our heuristic
approach should be supported by topological considerations on field spaces (intro-
ducing Sobolev norms for instance), which is out of the scope of this paper.

5. Conclusion

In this paper, we have revisited the DFM within a new mathematical framework
tailored to QFT. This framework distinguishes between functional spaces and field
spaces, the latter being functional spaces with specific actions of the gauge group
according to the model at hand. We have shown that the gauge fixing procedure
performed in the functional path integral of QFT is an example of the dressing
method. Additionally, we illustrated how the Fadeev—Popov gauge fixing procedure
can be reformulated using this new formalism. Notably, with R¢ gauge fixing con-
ditions and “unitary gauges” now understood in terms of dressing fields, we showed
that taking the limit £ — oo can be realized within the space of dressing fields. As
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an outcome, the locality of the dressing field is restored. This provides new insights
on the relationship between these two types of gauge.

Appendix A. Functional Differentials and some Jacobians

We present in this appendix some notations concerning functional differentials
adapted to our framework. These definitions have been used in the main text. Here,
we use them to compute some Jacobians associated to changes of field variables in
the functional integrals that are induced by the DFM in the unitary gauge. Some
of these computations have been presented before in [6], but in a less complete
manner.

Let F; be spaces and let F; be their associated functional spaces on an open set
U of M. We will look at F; as “infinite dimensional smooth manifolds” on which
it is possible to consider some structures usually defined on ordinary manifolds.
Obviously, this would require a lot of work to define precisely smoothness on these
spaces and smoothness of maps between these spaces (as considered in the follow-
ing). It is out of the scope of this paper to do that, since we will only be interested
in the algebraic part of the obtained structures, not in their analytic existence.)
The only basic structure we formally introduce is the tangent space T, F; of F; at
fi € Fi, which consists of all the 4(0) = (fi_zu:o for v : (—€,€) = F; any smooth
curve in Fj such that v(0) = f; (here € > 0). This reproduces the usual definition
of the tangent space in ordinary differential geometry.

Let C': F1 — F3 be a map between two functional spaces. For any fi € F1, the
linear tangent map of C at f; is the linear map dC[f1] : Ty, F1 — Ty, F2 defined
by dC[f1](¥(0)) := dczz(t) =0 for any smooth curve v as before. Thus, dC will be
called the functional differential of C'. This again reproduces the usual definition.

This definition is also a general version of the “functional derivative” introduced in
field theory, where F; denotes vector spaces and () = f; +tX; for a X; € Fi.

For Cy : F1 — Fy and Cy : F; — F3, one has the composition law (or chain
rule) d(CQ o Cl)[f1]<X1) = ng[Cl(fl)](dCl [fl](Xl)) for any X1 S Tf1ﬂ-

For C': Iy x Iy — F3, we denote by dp,C, for i = 1,2, the functional differen-
tials along the two functional spaces Fj, where dr,Clf1, fo] : T, Fi — Tos, ) Fs-
The total functional differential is then dC|[f1, fo](X1, X2) = dg, C[f1, fo](X1) +
dp,Clf1, f2](X2) for any X; € Ty F;. We can write this identity as dC =
dp, C +dg,C.

~ Let us consider a change of field variables given by C' : Fy — F, (where Fi,
respectively, Fy, collects all the initial fields, respectively, the final fields). The cor-
responding Jacobian to be computed in the functional integration is the functional
determinant of the linear map dC/[f;]. Such a computation was already proposed

In fact, we will consider the geometry of these spaces using an approach quite similar to the one
developed and described in [20] [21].
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in [6] for the DFM applied to the electro-weak sector of the standard model, but
there, it was not completely described.

Let us first consider the Abelian case described by the Lagrangian (II]). The
original field variables in the functional integral are (A, ¢) € R™ x C (remember
that A, € iu(1) = R). The dressing field u € U(1) for the unitary gauge is defined
by writing the polar decomposition ¢ = pu with p € R%. Let a = DC(A,u) =
A+ fy~'du € R™. Then the new variables are (a,p,u) € R™ x R} x U(1). For
the forthcoming computations, it is convenient to change the variable p € R}
into the variable ¢ € R by the relation p = e?. We then define the mapping
C:F :=R"xRxU(1) = F, :=R"xCas C(a,o,u) = (A, ¢) = (a+ tudu™, eu).
Let 3 € R™, 6 € R and & € R and define v(t) := (a + ta, o + t&, ue*®) a curve in
F such that y(0) = (a,0,u) and §(0) = (3,5,ia) € T ouyF1 2 R™ xR xu(1). A
straightforward computation then gives dC|a, 0, u](3, 5, ic) = (3+1da, (6+ic)eu).
The Jacobian for this change of variables is then the functional determinant of the
functional operator written in matrix form acting on the components (3,7, &):

1
1 ]lm (D1><m _d
]]-m ®1><m —-d €
e

Omx1 @1 —¢2
Omx1 P2 @1

for ¢ = e“u = ¢1 + i¢2. This Jacobian has to be composed with the one for
the change of variables p — ¢ = Inp, which is the determinant of the operator
T,R% 3 p+— & :=p'p € T,R. The complete operator to consider for the Jacobian
associated to the change of field variables (a, p,u) ~ (A, ¢) is then written in matrix
form on the components (3, g, @) as

o

Omx2 €e°u  ie’u

1
1 ]]-m (D1><m _d
]]-m (D1><m —-d €
e

M =
, Omx1 P rp1 —¢o
Omx2 Uu e’u .
Omx1 p~"¢2 &1
This is a matrix block operator of the form M = (Oil,:zz g) Its determinant
TrIn M

can be evaluated using Det M = e where the definition of In M relies on
the usual series for In(1 + z). Since (M — 1)" = (03112 D((l;?::i)):fl» on the
diagonal of InM one gets 0,, and InE. Applying the trace and the exponen-
tial, one then gets DetM = e™"E — DetE. The operator E has the form
Eup(2,y) = Eu(2)0™ (z — y) so that DetE = exp[6(™)(0) [ d™zIn(det E(z))]
(see for instance [22]) with det E = |¢| = p so that

Det M = exp [z / d™z 5™ (0) lnp(;v)].

For the SU(2) group, a similar computation can be performed. The original
field variables are (A, ¢) € R3™ x C?, the dressing field u is uniquely defined by the
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decomposition ¢ = nu () with n = ||¢|| € R%, and the dressed gauge potential is
a=DC(Au) = utAu + éu_ldu € R®". The new variables are then (a,n,u) €
R*" x R% x SU(2). As before, we use the variable ¢ := Inn € R, so that C :

Fi =R xR x SU(2) - F, == R*" x C? is given by C(a,0,u) = (A, ¢) =
(uau=1 + %udu_l, e’u (9)). The functional differential of C' is computed using the

curve y(t) = (a+ta, o + 15, e*%u) in Fy with, for any (a%) € R*, @ := a%7, where

the 7,’s are the Pauli matrices. R? is identified with su(2) through (a%) ~— id.
One then gets dC[a, 0, u](a,5,i&) = (uau=! + %Dd, (6 +id)¢) where as before

D& = da —ig[A, ). Using the explicit expressions for the Pauli matrices, this is the

operator written in matrix form in components (3,7, &) as
AdY™ Oixsm p

g
O3mx1 b1 —¢1s Pz —P2
O3mx1 ?2 ¢z b1
O3mx1 ?3 —¢2 —¢P1 Pa
O3mx1 on o1 —¢2  —¢3

with ¢ = (ﬁ;iiﬁj) and where Ad{™ acts as Ad, on the m su(2)-valued fields au.

As before, one has to compose with the operator associated to the change of field
variables 7 — ¢ = In7. One thus gets the complete operator to consider for the
Jacobian associated to the change of field variables (a,n, u) — (A, ¢):

Ad™  D1xam b

g
O3mx1 1 'd1  —¢a  d3  —¢o
Osmx1 0 '¢2 o3 o $1
O3mx1 1 'z —¢2 —¢1 s
Osmx1 N '¢s 1 —¢o  —¢s3

Following the same idea as before, the matrix block structure M = (O;::nlM 15)2 )

of this operator gives Det M = (Det E;)(Det E) with E; o(x,y) = Eiap(x)60™
(x — y). Finally, one has

Det M = exp {i/dmx 360 (0) In 7](:17)]

This relation can be compared to [23, Egs. (3.8) and (3.9)], but with the main
difference that in the DFM, the choice of a minimum in the potential V(¢) can be
delayed after the change of field variables, so that the VEV v does not enter into
the game here. We refer to [1] 2] for comments on this aspect of this approach.
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