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In this paper, we revisit the dressing field method (DFM) in the context of quantum
(gauge) field theories (QFT). In order to adapt this method to the functional path
integral formalism of QFT, we depart from the usual differential geometry approach
used so far to study the DFM which also allows to tackle the infinite dimension of the
field spaces. Our main result is that gauge fixing is an instance of the application of the
DFM. The Faddeev–Popov gauge fixing procedure and the so-called unitary gauge are
revisited in light of this result.
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1. Introduction

The dressing field method (DFM) was introduced in [1] as a way to reduce gauge

degrees of freedom in gauge field theories as a change of variables among the fields

of the theory. Since then, many applications of this method have been proposed, in

different contexts by collecting examples (some of them coming from the literature,

see [2] for a review), but always in relation to classical gauge field theories. This

is why, until now, this method was only considered in the framework of differential

geometry, which is the natural one for classical gauge field theories.

Let us just recall that to apply the DFM, one has to select in the gauge model a

(group valued) field u, the dressing field, which supports a specific gauge transfor-

mation: u must be constructed using (part/some of the) degrees of freedom in the

model, so that it is not an external element of the model. Then the dressing field

is used to “dress” all the gauge and the matter fields in the model with relations
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which look like gauge transformations (but they are not!). This produces dressed

fields with less (and even no more in the best case scenario) gauge variance. The

classical examples studied so far show that dressed fields are composite fields while

keeping the locality principle.

In this paper, we would like to start the study of applications of the DFM at the

quantum level, in the functional approach to quantum field theories (QFT). The

first application will focus on the Faddeev–Popov gauge fixing procedure (FPGFP)

in the functional integral, whose purpose, as one of the DFM, is to get rid of gauge

degrees of freedom (Sec. 3.2). The FPGFP relies on the choice of a representative

in each gauge class of fields, while the DFM makes apparent gauge-invariant fields.

The main result of this paper is that, in the FPGFP, the gauge fixing procedure

turns out to be an instance of the DFM. In short: for ideal gauge fixing maps

(see Definition 6), the transformation occurring in the FPGFP turns out to be

a dressing composition, and not a gauge transformation as usually claimed. This

result is proved using our natural Assumption 7. Upon using this result, we rewrite

the FPGFP in the framework of the DFM, taking into account the subtleties of

the FPGFP and the special features of the DFM, in particular concerning gauge-

invariant fields.

In the recent paper [3], the conclusion that the gauge fixing procedure is an

instance of the DFM is also drawn for a U(1) model in the Lorenz gauge. We refer

to this paper for bibliographical comments about the comparison between the DFM

and the gauge fixing procedure.

One important consequence of this result is the possibility to compare different

gauge fixing conditions by looking at their associated dressing fields in the same

functional space. Indeed, the dressing field u is constructed out of the fields con-

tained in the model as expected by the method, but it also uses (as expected in

relation to the FPGFP) the extra ingredient which is the gauge fixing condition.

For instance, this allows us to relate the Rξ gauge fixing condition to the “uni-

tary gauge” fixing condition by taking the limit ξ → ∞ at the level of dressing

fields u themselves. It is worthwhile to notice that there is no consensus that uni-

tary gauges are true gauge fixings, see for instance [4] for one viewpoint and [5]

for the other one. However, several examples of “unitary gauges”, for instance in

the standard model of particle physics (SMPP) [1, 2, 6], can be understood as an

application of the DFM. The above mentioned limit amounts to considering that

all these “gauge fixing conditions” (Rξ and unitary gauges) fall into the unifying

standpoint of the DFM.

One key feature of many examples of the DFM studied so far is that the dressing

field u is local in the fields in the model (in the usual sense of QFT). However, for

many gauge fixing conditions (Lorenz, Rξ), we can observe that the dressing field

u is not local in the fields in the model. This criterion of locality allows us to set

the “unitary gauges” apart from these gauge fixing conditions. It is already known

that the “unitary gauges” are of major interest because they show the observed

degrees of freedom. Following the (philosophical) line of reasoning developed in [7]
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(see also [3]) about the locality of u in terms of the fields in the model, we make the

assumption that the locality of the dressing field is related to the observability of

the dressed fields. It is out of the scope of this paper to address this point further.

As explained in detail in Sec. 2, in this paper we will not use the usual fiber

bundle approach to gauge field theories. Until now, the dressing field method has

been developed and illustrated in that framework since we focused mainly on clas-

sical field theories. But this is not the most pertinent framework for the functional

approach to QFT, even if it can be very useful for specific problems. For instance,

the geometrical structures are certainly not the best tools to use in the functional

integral of the quantization procedure.

So, for the applications we have in mind, especially the relation between the

DFM and the FPGFP, we have to adapt the DFM to the usual tools devoted to

this procedure. This is why, in this paper, we rewrite the dressing field method in

a more flexible framework, based, on the one hand, on functional spaces, that is

(smooth) maps on space-time (or locally on space-time) with values in some spaces

(Lie group, representation vector spaces for these Lie groups. . . ), and, on the other

hand, on the gauge group defining the gauge model under study.

In order to characterize “gauge fields”,a we will then equip these functional

spaces with actions of the gauge group. These functional spaces endowed with such

an action will be called field spaces. It is worthwhile to notice that different field

spaces can be based on the same underlying functional space, but with different

actions of the gauge group: this will play a key role in our approach. Examples

of such spaces are provided in Sec. 2, where the relation to the usual approach in

terms of fiber bundles and connections is explained.

We will also introduce maps between these functional/field spaces, in order to

get a general framework to write the DFM using such instances of maps. Especially,

in Sec. 2.2, we put forward the concept of “field-composer”, which can be used at

many places in relation to the DFM. This shows in particular that the DFM can

be naturally conceived in the above mentioned framework of functional spaces and

actions of the gauge group defined on them.

Many computations given in the paper may look “usual” on first reading. But, as

mentioned in several papers now (see the review [2] for all the details and references

therein), the DFM is close in many respect, but not equivalent, to the ordinary

methods used so far to reduce gauge symmetries. It was already noticed that it can

“replace” the spontaneous symmetry breaking mechanism (SSBM) in the SMPP,

opening some new avenues for understanding the electro-weak sector of the SMPP

(since it decouples the apparition of the observed degrees of freedom from the choice

of an energy scale at which to produce mass terms). In this paper, we open a new

chapter by relating the DFM to the FPGFP that was thought to be quite different

before this work (even by the authors).

aIn this paper, “gauge fields” collectively refers to all the fields in the theory on which the gauge
group acts.
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Let us give a simple illustration of the fact that the DFM provides highly sat-

isfactory responses to some usual questions related to gauge fixing. To do that, let

us apply the DFM to the simple example of an Abelian U(1) toy model defined by

the Lagrangian (we use notations introduced in Sec. 4)

L[A, φ] := [(∂μ − ieAμ)φ]
†[(∂μ − ieAμ)φ]− V (φ)− 1

4
FμνF

μν , (1.1)

where φ is C-valued, Fμν is the field strength tensor associated to Aμ, V (φ) =
μ2

2 φ
†φ + λ

4 (φ
†φ)2, and the actions of a gauge transformation with γ = eiα ∈ U(1)

(U(1)-valued smooth map) are φγ := γ−1φ and Aγμ = Aμ +
i
eγ

−1∂μγ = Aμ − 1
e∂μα.

Let φ = ρeiχ with ρ := |φ|, so that under the gauge transformation γ one has

ργ = ρ and χγ = χ−α. The Lagrangian can be written in the (ρ, χ) field variables:

L[A, ρ, χ] = (∂μρ)(∂
μρ) + ρ2(∂μχ− eAμ)(∂

μχ− eAμ)− V (ρ)− 1

4
FμνF

μν .

The purpose of the usual gauge fixing procedure for the so-called “unitary gauge” is

to remove any occurrence of the χ field. To do that, the idea is to perform a gauge

transformation with γ such that α = χ. But, for any gauge transformation ρ �→ ρ,

χ �→ χ − α, Aμ �→ Aμ − 1
e∂μα, the expression ∂μχ− eAμ transforms into itself (as

expected). So, there is no gauge transformation that can remove the χ field.b

The DFM is strongly related to this line of reasoning and its success, for the same

problem, relies on the fact that it considers the right objects in the right spaces,

and interprets some usual relations in a different manner (gauge transformations

for instance).

The first step consists in identifying in the model the dressing field u which

takes its values in U(1) and which transforms as uγ = γ−1u. With the previous

notation, a natural candidate for u is u = eiχ, that is, we write φ = ρu, so that

u is a local expression in terms of the components of φ. Here, we see that u looks

very much like the γ proposed in the unitary gauge fixing procedure. The second

step of the method is to dress all the gauge fields with u, using the usual relations

for the action of the gauge group, but with u instead of γ. Here again, it looks like

we perform a gauge transformation on all the fields. But, as explained in detail in

[1, 2], the dressing field u is not an element of the gauge group so that the dressing

of all the fields by u cannot be a gauge transformation (it is a redistribution of the

degrees of freedom in new field variables). The dressed fields for the Aμ’s are the

fields aμ := Aμ + i
eu

−1∂μu and the dressed field for φ is ρ. Since this change of

variables in the space of fields is invertible, one can write the Lagrangian in terms

of these dressed fields:

L[a, ρ] := [(∂μ − ieaμ)ρ]
†[(∂μ − ieaμ)ρ]− V (ρ)− 1

4
fμν f

μν ,

bIt is customary that only a “partial” gauge transformation with α = χ applied only to the fields
Aμ, but not to the field χ, could do the job. This is clearly not a satisfactory procedure.
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where fμν has the same expression in terms of the aμ’s as Fμν in terms of the Aμ’s.

In this Lagrangian, the χ field has disappeared as desired. Note that a change of

field variables yields a Jacobian in the functional integral. Two examples of such

Jacobians are computed in Appendix A.

One way to understand why the procedure works with the DFM but not with

the gauge transformation is to remember that the gauge transformation defined by

γ cannot change the status of the objects, in particular the fields Aμ, which still

define a connection 1-form. By definition, a gauge transformation preserves field

spaces (since a field space is precisely defined to support a specific action of the

gauge group, see Sec. 2). On the contrary, in this example at hand, the dressing field

u in the DFM, which captures the same degrees of freedom as γ, amounts to defining

objects (the dressed fields) belonging to new field spaces. The fields aμ no longer

define a connection 1-form since they form a gauge-invariant object (they belong to

a field space supporting the trivial action of the gauge group, see the notion of field-

composer in Sec. 2.2). In the terminology to be defined in Sec. 2, γ and u belong

to the same functional space, as U(1)-valued functions, while they do not belong

to the same field spaces since they do not support the same action of the gauge

group. It is the same for the functions Aμ and aμ. So, by its very definition, a gauge

transformation cannot hide the field χ (invariance of the combination ∂μχ− eAμ),

while the approach of the DFM is to “compose” the Aμ’s and χ functions into

the new fields aμ. This is why χ disappears in the dressed Lagrangian, as part of

the aμ’s.

2. The Framework

The usual modern mathematical approach to (classical) gauge fields makes use of

fiber bundles. Here, as explained in the Introduction, we will not use this frame-

work, since we will only consider local fields (on the space-time manifold). Indeed,

one of the main results concerning the DFM, [1, Proposition 2], tells us that the

existence of a global dressing field with values in the whole structure group implies

the triviality of the principal fiber bundle.c So, instead of relying on fiber bundles to

identify the field spaces, we will rely on the action of the gauge group on local fields

defined on open subsets U of the m-dimensional space-time manifold M . Working

with such local fields will circumvent the global triviality constraint and permit to

make direct contact with the structures used in functional integrals of QFT. Note

that U can be M itself: in QFT, one has M = R4 and all the fiber bundles are

trivial (contractive space) so that one can take U = R4.

2.1. Functional spaces, field spaces and gauge group actions

Let us denote by G the structure group of our model, with Lie algebra g. For any

open subset U of M and any representation vector space E of G, let us introduce

cIn the paper, we focus ourselves on the whole structure group and not possible subgroups.
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the following local functional spaces :

GU := {g : U → G}, AU := {a = (aμ)/aμ : U → g}, EU := {ϕ : U → E},
where all the maps are smooth. The space GU is a group when equipped with

the natural group law inherited from the group law of G and, in the same way,

EU is a vector space. We emphasize that these spaces are equipped only with

their functional space structure (which depends on the target space, and on which

topological structures could be added, but this is outside the scope of this paper).

The main point of our approach is that these spaces will be equipped with different

actions of the gauge group.

Let us then first define the local gauge group GU as follows: it is GU as a group

(and so as a functional space), equipped with the right action of (the group) GU
defined by γg := αg(γ) := g−1γg for any g ∈ GU and γ ∈ GU . It is important

to distinguish the two mathematical structures: GU is a group, and GU is a group

equipped with an action of the group GU . Note that this action induces, with the

same formula, an action of the group GU on itself. It is this action that we will

consider in the following.

As pointed out before, we equip now some functional spaces with right actions

of the group GU , and we call them field spaces. It will be important to remember

that different field spaces can have the same underlying functional space, since the

actions can be different. The first field space at hand is GU for which the functional

space is GU equipped with the above action α. We will use special notations for

the following field spacesd:

• The field space of (local) connections AU is the functional space AU equipped

with the action A �→ Aγ := γ−1Aγ + γ−1dγ for any γ ∈ GU and A ∈ AU .

• The field space of E-valued fields EU is the functional space EU equipped with

the action φ �→ φγ := 
γ−1φ for any γ ∈ GU and φ ∈ EU , and where 
 is the

representation of G on E (i.e. a left action).

• The field space of invariant connections IA

U is the functional space AU equipped

with the trivial action B �→ Bγ := B for any γ ∈ GU and B ∈ IA

U .

• The field space of invariant E-valued fields IEU is the functional space EU
equipped with the trivial action ψ �→ ψγ := ψ for any γ ∈ GU and ψ ∈ IEU .

• The dressing field space DU is the functional space GU equipped with the action

u �→ uγ := γ−1u for any γ ∈ GU and u ∈ DU .
• The undressing field space DU is the functional space GU equipped with the

action v �→ vγ := vγ for any γ ∈ GU and v ∈ DU .

Let us explain how these definitions are related to the usual approach on gauge

field theories using principal bundles and associated bundles. Indeed, our approach

can be considered as a local version of this usual approach and the previous defini-

tions are obviously strongly related to this approach.

dWherever possible, we will also try to use different notations for the elements of these spaces.
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Let P = P (M,G) be a G-principal bundle over the (space-time) base manifold

M , and let F be a space equipped with a left action of G denoted by (f, g) �→ ρ(g)f

for any f ∈ F and g ∈ G. Then the space of (smooth) sections of the associated fiber

bundle P ×ρ F is isomorphic to the space of (smooth) equivariant maps φ : P → F

satisfying φ(p · g) = ρ(g−1)φ(p) for any p ∈ P and g ∈ G, where p · g is the right

action of G on P . It is well known that the gauge group G of P is isomorphic with

the space of sections of the associated bundle P ×αG for the action αg(γ) = g−1γg

defined above. Let us denote by Ψ : P → G a generic element of the gauge group

considered as an equivariant map (for the α action) P → G. Then, with previous

notations and identifications, the gauge group action φ �→ φΨ on sections of P ×ρF
takes the form φΨ(p) := ρ(Ψ(p)−1)φ(p).

Let U ⊂ M be an open subset such that P|U � U × G and let s : U → P|U be

a trivializing section. For any equivariant map φ : P → F , define its local section

ϕ := s∗φ over U and let γ := s∗(Ψ). Then the gauge group action at the level of

local sections takes the form ϕ �→ ϕγ with ϕγ = ρ(γ−1)ϕ. In particular, the action

of the gauge group on itself takes the form presented above. In the same way, we

recover the action on (local) connections A ∈ AU .

As expected, there is then a strong relation between the expression of the action

of the gauge group on local fields and the field space in which these local fields

belong, since the action determines ρ, which in turn determines the associated fiber

bundle. For instance, let us consider the dressing field space D. The left action of

G to consider is the left multiplication on G, Lg(g
′) = gg′, considered as an action

of G (group) on G (fiber). Then, a dressing field is a local section of the associated

fiber bundle P×LG, and it is well known that P×LG � P . Since a global section of

P can only exist if and only if P is trivial, we cannot expect such sections (dressing

fields) to be globally defined except in the trivial situation P =M ×G. But at the

local level, local dressing fields can always be considered.

So, working at the local level (over U for which P|U is trivial) amounts to con-

sidering “local sections” which are always well defined, and identifying the actions

of the gauge group allows to understand the global geometric structures to which

these fields (should) belong. This is why in this paper we have chosen to consider

gauge fields through this approach. In particular, we will not take interest in the

“changes of trivialization”, which are the usual way to identify the bundle struc-

ture on which the fields live. Our main focus is on the actions of the gauge group,

considered itself as a field space of local sections.

To simplify the presentation and when the open subset U is fixed, we will omit

it in the notations.

2.2. Field-composer and the dressing field method

In [1], we used a lot the notion of “composite fields”. We would like to clarify its

meaning in light of this approach. The formal definitions and developments pre-

sented below may seem cumbersome at first sight, but they are in fact quite useful
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(and almost necessary) for correctly interpreting the various structures involved in

the gauge-fixing process. Moreover, these structures are proving useful and efficient

for carrying out certain calculations.

In the following, we will use generic notations for functional spaces and field

spaces. Let F be a functional space. Denote by F (respectively, IF ) this functional
space equipped with an a priori nontrivial action of G (respectively, with the trivial

action of G). This nontrivial action (physically interesting and useful) is extracted

from the gauge field model at hand. F is then the usual space for a gauge field,

for instance, A or E given above. In contrast, the trivial action defining IF will

arise from the DFM. Hence, the field space F is the cornerstone of forthcoming

constructions.

When necessary, field spaces of type F will be distinguished by lower indices.

Definition 1. Let F1, . . . ,Fr+1 be some generic field spaces on which the actions

of the gauge group are denoted by Fi � φi �→ φγi for any γ ∈ G. A field-composer

is a map C : F1 × · · · ×Fr → Fr+1 which is local in terms of fields and satisfies the

G-equivariance

C(φγ1 , . . . , φ
γ
r ) = C(φ1, . . . , φr)

γ

for any φi ∈ Fi and γ ∈ G.

Note that for r = 1, a field-composer is just a G-equivariant map between two

field spaces.

Let us write C(φi) = C(φ1, . . . , φr). Then one has C(φγ1γ2i ) = C(φγ1i )γ2 =

C(φi)
γ1γ2 for any γ1, γ2 ∈ G since φγ1γ2i = (φγ1i )γ2 .

Recall that the locality of C means that the value of C(φi) at any (space-time)

point depends only on the values at that point of the fields φi and a finite number

of their derivatives.

Using the generic notations, let GA : F × G → F be the “gauge action trans-

formation” map which associates to (ϕ, g) ∈ F ×G the element in F which would

formally correspond to the gauge action of g on ϕ if g were in G and ϕ in F (the

field space equipped with a nontrivial action of G). Since GA is the functional

expression of a right action, we have

GA(GA(ϕ, g1), g2) = GA(ϕ, g1g2)

for any ϕ ∈ F and g1, g2 ∈ G.

Proposition 2 (Declinations of GA as field-composers). For the two decli-

nations of F as field spaces F and IF together with the three declinations of G as

field spaces G, D, and D, the gauge action transformation map GA induces the only

three field-composers GT : F×G → F (“gauge transformation”), DC : F×D → IF
(“dressing composer”) and UDC : IF ×D → F (“un-dressing composer”).

2550029-8
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Proof. For any φ ∈ F and γ, γ′ ∈ G, one has GA(φγ
′
, γγ

′
) = GA(GA(φ, γ′),

γ′−1γγ′) = GA(φ, γ′γ′−1γγ′) = GA(φ, γγ′) = GA(GA(φ, γ), γ′), so that GT

(φγ
′
, γγ

′
) = GT(φ, γ)γ

′
.

For any φ ∈ F , u ∈ D and γ ∈ G, one has GA(φγ , uγ) = GA(GA(φ, γ), γ−1u) =

GA(φ, γγ−1u) = GA(φ, u), so that DC(φγ , uγ) = DC(φ, u) = DC(φ, u)γ .

For any φ ∈ IF , v ∈ D and γ ∈ G, one has GA(φγ , vγ) = GA(φ, vγ) =

GA(GA(φ, v), γ), so that UDC(φγ , vγ) = UDC(φ, v)γ .

It is easy to check that these three field-composers are the only ones we can

construct with the proposed field spaces.

Note that since G is a group, GT inherits the relation GT(GT(φ, γ), γ′) =

GT(φ, γγ′) from GA. The proof of the following proposition is straightforward.

Proposition 3. The inverse map ι : G → G, ι(g) := g−1 induces three field-

composers (G-equivariant maps) ι : G → G, ι : D → D, and ι : D → D.

The multiplication map μ : G×G→ G, μ(g1, g2) := g1g2 induces the five field-

composers μ : G × G → G, μ : G × D → D, μ : D × G → D, μ : D × D → G, and
μ : D×D → IG where IG is the functional space G equipped with the trivial action

of G.e

From these properties, we see that the group structure of the functional space

G can be lifted to a group structure on the field space G (i.e. a group law that is

compatible with the action of G on itself). From now on, the maps μ and ι will be

dropped out to the benefit of their respective realization.

From Proposition 3, for any two dressing fields u1, u2 ∈ D, there is a unique

γ := μ(u1, ι(u2)) = u1u
−1
2 ∈ G such that u2 = γ−1u1. This implies that D has a

unique orbit for the (free) right action of G on D. A similar result holds for the

right action of G on D.

Lemma 4. For any u ∈ D (respectively, v ∈ D), the dressing field map DCu :

F → IF (respectively, the undressing field map UDCv : IF → F) defined by

DCu(φ) := DC(φ, u) (respectively, UDCv(ψ) := UDC(ψ, v)) is an isomorphism,

but is not G-equivariant. Explicitly, for any γ ∈ G, one has DCu(φ
γ) = DCγu(φ)

(respectively, UDCv(ψ)
γ = UDCvγ(ψ)) for any u ∈ D and φ ∈ F (respectively, any

v ∈ D and ψ ∈ IF ).

This proves, as expected, that generically F and IF are not isomorphic as field

spaces.

Proof. It is easy to check that the inverse map for DCu is UDCι(u). These maps

cannot be G-equivariant since the equivariance of DC (respectively, UDC) requires

eWe restrict ourselves to the three field spaces G,D and D as source spaces.
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to change at the same time φ and u (respectively, ψ and v) as seen in Proposi-

tion 2: here, one has DCu(φ
γ) = GA(GA(φ, γ), u) = GA(φ, γu) = DCγu(φ) and

UDCv(ψ)
γ = GA(GA(ψ, v), γ) = GA(ψ, vγ) = UDCvγ(ψ).

The DFM has been formalized in [1] in terms of fiber bundles from ideas devel-

oped in [6]. Let us summarize part of this method in this approach.f With the

previous notations, consider a gauge-invariant Lagrangian L(φ1, . . . , φr), and sup-

pose there exists (in the model) a natural way to define a field u ∈ D. Then, one

can perform a change of variables from the field spaces Fi to the field spaces IFi by

using the dressing field map DCu, which associates to φi the gauge-invariant field

φui := DC(φi, u) ∈ IFi . The Lagrangian can then be written in terms of the φui ’s, on

which all the actions of the gauge group G are trivial, so that the G is not relevant

anymore in the model and can be thus ignored. It is explained in [1, 6] that the

so-called unitary gauge in the electro-weak sector of the SMPP, whose purpose is

to get rid of the SU(2)-gauge symmetry, is simply such a change of variables for a

natural dressing field in the model.

Note that the DFM, as a change of variables in the field spaces, is invertible, at

least in a formal way, since one can “undress” all the fields φui ’s using the un-dressing

composer UDC with the undressing field v = ι(u) (application of Lemma 4). Our

“formal” reservation is due to the fact that such an undressing field may not be

“natural” to define for a model without symmetry! In fact, some examples of this

procedure have been described in the literature, where the un-dressing composer

was used to add an “artificial” gauge symmetry in some models where some good

candidate for an undressing field v could be proposed. What is a “good candidate”

has to be defined in each situation. For instance, it is explained in [1] how to promote

in such a way a Proca-like Lagrangian describing a gauge-invariant massive vector

field Aμ to a Stueckelberg Lagrangian which implements a U(1)-gauge symmetry.

Thus, besides the two field-composers GT (gauge transformations) and DC

(dressing), the undressing composer UDC defined in Proposition 2 might also have

a role to play in gauge field theory.

3. Gauge Fixing and Dressing Fields

Let us now show how the formalism introduced in the previous section can be used

to revisit the gauge fixing procedure in QFT in the light of the DFM.

3.1. Gauge fixing in QFT as an instance of the DFM

A gauge fixing map is a map F : F1 × · · · × Fr → V where the Fi’s are functional

spaces underlying the field spaces Fi of the model and V is a functional space with

f In [1], the method was developed in a very general approach: for instance, the symmetry group
to be removed was not necessary in the whole group G, but a subgroup of it. Here we will not
consider this situation.
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values in a vector space V . In order to simplify the notations, let us write F(ϕi) for

F(ϕ1, . . . , ϕr).

Definition 5. Given a gauge fixing map F, its associated gauge fixing condition is

the gauge fixing equation F(GA(φi, g)) = 0 to be solved for g ∈ G while the φi ∈ Fi
are fixed.

Note that, at this point, we only specify the field spaces for the φi’s. Concerning

g ∈ G, we cannot yet determine its field space and we do not know to which field-

composer the gauge action transformation GA will have to be promoted in the

equation F(GA(φi, g)) = 0. In order to determine this field space, we will need to

identify the action of G to which g is subjected. In order to do that, we consider

ideal gauge fixing maps, see e.g. [8, right after Eq. (3.327)] and [9, p. 361].

Definition 6. An ideal gauge fixing map is a gauge fixing map F such that, for

any φi ∈ Fi, there is a unique g ∈ G which solves the gauge fixing equation. This

implies that there is a well-defined one-to-one map F̂ : F1 × · · · × Fr → G.

The Gribov ambiguity raises the question of the existence of such ideal gauge

fixing maps [10, 11]. It is out of the scope of this paper to get involved in that

difficult problem. We will adopt the usual “practical” point of view that the gauge

fixing maps of interest are ideal.

For an ideal gauge fixing map, we propose the following procedure to determine

the action of G on g. Let us consider a configuration (φi) with φi ∈ Fi. Since
the gauge fixing map F is ideal, there is a unique g := F̂(φi) ∈ G such that

F(GA(φi, g)) = 0. Let γ ∈ G and let us use the notation φ′i := GT(φi, γ) =

GA(φi, γ) (these are true gauge transformations). Then there is a unique g′ :=

F̂(φ′i) ∈ G such that F(GA(φ′i, g
′)) = 0.

Assumption 7. If that makes sense (i.e. if it is an action), we define the action of

γ on g as the map g �→ g′, so that, with our usual notations, GA(g, γ) = gγ := g′.
In other words, the action is such that the map F̂ is G-equivariant, namely, F̂(φγi ) =

F̂(φi)
γ .

We can now establish the main result of our approach.

Proposition 8. The field space of the element g ∈ G which solves the ideal gauge

fixing condition F(GA(φi, g)) = 0 is D.

From this proposition, we can now deduce that the gauge action transformation

GA in the previous formulation is the field-composer DC, that F is promoted to a

map IF1×· · ·×IFr → V , that the gauge fixing condition looks like F(DC(φi, u)) = 0

to be solved for u ∈ D while the φi ∈ Fi is fixed, and that F̂ : F1 × · · · × Fr → D.

Beware that F̂ looks like a field-composer but the locality is not secured as it will

be shown in some examples below.

Proof. The proof is quite straightforward: one has to solve for g′ ∈ G the equation

F(GA(φ′i, g
′)) = 0. Note that GA(φ′i, g

′) = GA(GA(φi, γ), g
′) = GA(φi, γg

′). Since
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the gauge fixing map is ideal, if g ∈ G is the unique solution of F(GA(φi, g)) = 0,

then one must have g = γg′, which implies GA(g, γ) = gγ = g′ = γ−1g. This is the

action of G on G defining the dressing field space D.

Note that we depart from the usual way to look at the gauge fixing procedure,

in which g is considered as an element of the gauge group. This usual identification

may have its root in the fact that the most obvious action used in gauge field

theories on the functional space G is the one defining the gauge group G. Indeed,
the gauge fixing condition is a local (and possibly nonlinear) differential equation

in terms of the local functions (φi, g) to be solved for g. But, isolated from any

other (formal) considerations, this equation alone does not tell us which field space

g must belong to, since its structure only constrains the functional space G. It is

then quite natural to implicitly assume that the action to which g ∈ G is subjected

is the one defining g as a local version of an element of the gauge group G. All
reasonable physicists are inclined to associate such a map g with a (local) gauge

transformation.

Our result challenges this approach since we use a natural criterion to determine

the action of G on the functional space G. Obviously, the requirement in Assump-

tion 7, that F̂ be G-equivariant, could be questioned. However, we consider this

condition to be the simplest one which respects the spirit of gauge fields theories,

where the gauge group is the central object from which it is natural to define the

other structures. It is difficult to ask for another natural condition for F̂ which could

take into account the actions of the gauge group.

3.2. The FPGFP revisited

Let us now show how the Faddeev–Popov method adapts to our framework. Let us

use φ for all the fields in the model, including the gauge potential, the scalar fields

and the fermion fields. Denote by S(φ) the action functional, G the gauge group

and F the field space of all the fields in the model.

The usual method requires three hypotheses:

(1) The action functional S(φ) is gauge-invariant.

(2) In our context, the integration along the field space F can be commuted with

the integration along the gauge group G.
(3) Denote by d[φ] the measure on F , then for any functional P (φ), one has, for

any gauge transformation γ ∈ G,
∫
F
d[φ]P (φγ) =

∫
F
d[φ]P (φ). (3.1)

This relation is equivalent to the requirement that the measure d[φ] is gauge-

invariant since
∫
F d[φ]P (φ

γ) =
∫
F d[φ

γ−1

]P (φ).
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The FPGFP relies on the “trivial” expression

1 =

∫
G
d[γ]ΔFP[φ, γ]δ(F(φ

γ)), (3.2)

where ΔFP[φ, γ] is the functional determinant of the functional derivative of

γ �→ F(φγ) along γ (at fixed φ). In the notations given in Appendix A, this is

the determinant of the linear map dG(F ◦GT)[φ, γ] : TγG → TF(φγ)V . One can for-

get for a while about field spaces and look only at the underlying functional spaces.

Then one has to compute the linear map dG(F ◦ GA)[φ, γ] : TγG → TF(φγ)V .

Let t �→ γ(t) be a smooth curve in G such that γ(0) = γ and γ̇(0) = γ̃ ∈ TγG.

Then, for ψ := GA(φ, γ), one has F ◦ GA(φ, γ(t)) = F ◦ GA(GA(ψ, γ−1), γ(t)) =

F ◦ GA(ψ, γ−1γ(t)) so that dG(F ◦ GA)[φ, γ](γ̃) = d
dt(F ◦ GA)(ψ, γ−1γ(t))|t=0 =

dG(F ◦GA)[ψ, e] ◦ TγLγ−1(γ̃). Taking the determinant, one gets

ΔFP[φ, γ] = ΔFP[ψ, e] Det(TγLγ−1) = ΔFP[ψ] Det(TγLγ−1), (3.3)

where e ∈ G is the unit element and ΔFP[ψ] := ΔFP[ψ, e]. This relation is not

often mentioned in the literature: it can be found for instance in a similar form as

[12, Eq. (15.5.17)].g

One can now insert (3.2) into

Z :=

∫
F
d[φ]eiS(φ) =

∫
F
d[φ]

∫
G
d[γ]ΔFP[φ, γ]δ(F(φ

γ))eiS(φ)

=

∫
F
d[φ]

∫
G
d[γ]ΔFP[φ, γ]δ(F(φ

γ))eiS(φ
γ) by item (1)

=

∫
G
d[γ]

∫
F
d[φ]ΔFP[φ, γ]δ(F(φ

γ))eiS(φ
γ) by item (2)

=

∫
G
d[γ] Det(TγLγ−1)

∫
F
d[ψ]ΔFP[ψ]δ(F(ψ))e

iS(ψ)

by item (3) and (3.3), with ψ = φγ . (3.4)

The steps that usually follow in the FPGFP will not concern us.

We adapt the usual hypotheses to our framework in the following way. Let F

be a functional space. We introduce five hypotheses.

(Hyp. 1) The action functional S and the gauge fixing map F are defined on F .

(Hyp. 2) For any g ∈ G and ϕ ∈ F , one has S ◦GA(ϕ, g) = S(ϕ).

gIn (3.2), the δ function selects a unique γ0 such that ψ0 := GA(φ, γ0) satisfies F(ψ0) = 0. Then,
using (3.3) for this γ0, (3.2) gives ΔFP[ψ0]−1 = Det(Tγ0Lγ0−1 )

∫
G d[γ]δ(F(φ

γ)). Up to the missing
factor Det(Tγ0Lγ0−1 ), this relation is often used in the literature as a definition of ΔFP[φ].
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(Hyp. 3) The measure on any field space is the measure on the underlying func-

tional space. Denote by d[ϕ] the measure on F , then for any functional

ϕ �→ P (ϕ) on F , one has, for any g ∈ G,∫
F

d[ϕ]P ◦GA(ϕ, g) =

∫
F

d[ϕ]P (ϕ). (3.5)

(Hyp. 4) In our context, the integration along F can be commuted with the inte-

gration along G.

(Hyp. 1) is not a strong restriction, since S is a local expression on F , which

turns out to be a local expression on F (by forgetting about the action of G).
Concerning F, this was already in its definition.

(Hyp. 2) is equivalent to the usual hypothesis (1) if one goes from field spaces

to functional spaces. This is possible since the invariance of the action is proved in

a formal way which only involves the “functional form” of the gauge action, which

is encoded into the gauge action transformation GA appearing in our hypotheses.

(Hyp. 3) means that the measure on a field space is not related to its defining

action, but only on the underlying functional space equipped with the gauge action

transformation GA as required in (3.5). Finally, Eq. (3.5) can be related to the

standard equation (3.1). Indeed, the fulfillment of (3.1) can be performed at the

functional level, requiring only the explicit form of the group action. The functional

equivalent of (3.1) can be written as
∫
F d[ϕ]P (ϕ

g) =
∫
F d[ϕ]P (ϕ), which is (3.5)

since ϕg = GA(ϕ, g).

Because of (Hyp. 3), the measures on G and F are the measures on G and F

respectively, so that (Hyp. 4) is equivalent to the usual hypothesis (2).

Our hypotheses, written at the level of functional spaces, are also true on field

spaces and field-composers on field spaces, when these expressions make sense. For

instance, in the following, we will use DC in place of GA for the proper field spaces.

Let us now write the FPGFP in our framework. (Hyp. 1) will allow to consider

S ◦DC(φ, u) and F ◦DC(φ, u) for any φ ∈ F and u ∈ D, since DC(φ, u) ∈ F (since

DC(φ, u) ∈ IF ).
Because the gauge fixing map F is ideal, one has∫

D
d[u]ΔFP[φ, u]δ(F ◦DC(φ, u)) = 1,

where ΔFP[φ, u] is the determinant of the functional derivative dD(F ◦ DC)[φ, u],

as in the usual method. We insert this equality into the expression we want to

evaluate:

Z :=

∫
F
d[φ]eiS(φ) =

∫
F
d[φ]

∫
D
d[u]ΔFP[φ, u]δ(F ◦DC(φ, u))eiS(φ) (3.6)

=

∫
F
d[φ]

∫
D
d[u]ΔFP[φ, u]δ(F ◦DC(φ, u))eiS◦DC(φ,u) by (Hyp. 2)
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=

∫
D
d[u]

∫
F
d[φ]ΔFP[φ, u]δ(F ◦DC(φ, u))eiS◦DC(φ,u) by (Hyp. 4)

=

∫
D
d[u] Det(TuLu−1)

∫
IF

d[ψ]ΔFP[ψ]δ(F(ψ))e
iS(ψ)

by (Hyp. 3) and (3.3) with ψ = DC(φ, u). (3.7)

At this point, sticking to the usual computation in the FPGFP, one can factor

out the integration of u along D, and consider only the remaining integration on

the space of invariant fields. The action functional S, initially expressed on F , is

now expressed on IF after the change of field variables DCu : F → IF where u is

the field variable of the first integration along D (our (Hyp. 1) allows to do that).

Note that, looking at the previous computations, our hypotheses can be refor-

mulated for field spaces in the following way:

(Hyp.′ 1) The action functional S is defined on F and IF in the same functional

way.

(Hyp.′ 2) For any u ∈ D and φ ∈ F , one has S ◦DC(φ, u) = S(φ).

(Hyp.′ 3) The measure on IF is the push-forward of the gauge-invariant measure

on F by DCu : F → IF for any u ∈ D and it is independent of u ∈ D.

For any functional ψ �→ P (ψ) on IF , one has∫
F
d[φ]P ◦DC(φ, u) =

∫
IF

d[ψ]P (ψ) for any u ∈ D.

(Hyp.′ 4) In our context, the integration along F can be commuted with the inte-

gration along D.

In (Hyp.′ 3), the measure on IF is precisely defined. Let us show that this

measure does not depend on the dressing field u ∈ D used to define it through the

push-forward if and only if item (3) of the usual hypotheses holds.

Let us fix u ∈ D. By its very definition, the push-forward measure du[ψ] defined

on IF along the map DCu from the measure d[φ] on F is such that, for any func-

tional P on IF , one has
∫
IF du[ψ]P (ψ) =

∫
F d[φ]P ◦ DCu(φ). Any other dressing

field u′ ∈ D is related to u by u′ = γu for a unique γ ∈ G. Using Lemma 4 and

(3.1), one gets∫
IF

du′ [ψ]P (ψ) =

∫
F
d[φ]P ◦DCγu(φ) =

∫
F
d[φ]P ◦DCu(φ

γ)

=

∫
F
d[φ]P ◦DCu(φ) =

∫
IF

du[ψ]P (ψ)

so that du′ [ψ] = du[ψ].

Conversely, if the measure du[ψ] defined on IF fulfills du′ [ψ] = du[ψ] for any

u, u′ ∈ D, then, on account of previous notations, set Q(φ) = P ◦ DCu(φ). The
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above computation and the hypothesis on du[ψ] then show that
∫
F d[φ]Q(φ) =∫

F d[φ]Q(φγ) for any γ ∈ G, which is item (3) since Q can be any functional (P �→ Q

is invertible using UDCu−1).

In the usual approach, the action functional is gauge-invariant and it is always

evaluated on the same field space. On the contrary, in our framework, thanks to

the functional gauge invariance (Hyp. 2) or to (Hyp.′ 2), it is first composed with

the dressing field map DCu and then expressed on IF .
Since the Lorenz gauge is mainly used in standard Faddeev–Popov calculations,

let us consider the gauge fixing map F(A) := ∂μAμ for any A ∈ A (here V = LieG).

It is well known that this gauge fixing map is not ideal, but let us assume neverthe-

less that it is, as assumed in many physical developments, as already quoted [8, right

after Eq. (3.327)] and [9, p. 361]. Then, the gauge fixing condition F(DC(A, u)) = 0

takes the form of a nonlinear second-order differential equation to be solved for

u ∈ D:

u−1(∂μ∂μu) + (∂μu−1)(∂μu) + (∂μu−1)Aμu+ u−1Aμ(∂μu) + u−1(∂μAμ)u = 0.

It is well known that the solution is a nonlocal expression u(A) = F̂(A), that is, it is

expressed in terms of A and (at least symbolically) an infinite number of derivatives

of A. So, for the Lorenz gauge fixing map, the map F̂ defined in Definition 6 is

nonlocal.

This differs from the usual examples illustrating the DFM [1, 2, 6, 13–17] where

the dressing field u was always defined in a local way in terms of the fields in the

model. This locality plays a crucial role in the debate between the artificiality versus

the substantiality of gauge symmetries [7] (see also [18, Chap. 5]).

We will see in Sec. 4 that the nonlocality of u is also a characteristic of the Rξ
gauge fixing map, and that it disappears in the limit ξ → ∞ (the so-called unitary

gauge fixing condition).

3.3. Gauge fixing in QFT as a change of field variables

The previous interpretation of the FPGFP as an application of the DFM is not

satisfactory from the original viewpoint of the dressing approach, which consists in

a mere change of field variables. Let us see how such a change of field variables can

be implemented in Z defined in (3.6) in order to compare with the previous version

of the FPGFP.

Let us suppose as before that the gauge fixing map F is ideal. We will use

the following maps: let DCF̂ : F → IF be defined by DCF̂(φ) := DC(φ, F̂(φ)) (see

Definition 6) and let F̃ : F → V be defined by F̃(φ) := F◦DCF̂(φ) = F◦DC(φ, F̂(φ))

for any φ ∈ F .

Then, any φ ∈ F defines a unique u = F̂(φ) ∈ F̂(F) ⊂ D such that F ◦
DC(φ, u) = 0. This u is used to dress the fields φ by defining the invariant field

ψ := DC(φ, u) = DCF̂(φ) ∈ F−1(0) ⊂ IF . One gets a change of field variables
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F � φ �→ (u, ψ) ∈ F where

F := (F̂×DCF̂)(F)

= {(u, ψ) ∈ D × IF | ∃ !φ ∈ F s.t. u = F̂(φ) and ψ = DCF̂(φ)}
⊂ F̂(F)× F−1(0) ⊂ D × IF .

Performing this change of field variables in the functional integral defining Z gives

Z =

∫
F
d[φ]eiS(φ) =

∫
F

d[u]d[ψ]J(u, ψ;φ)eiS(ψ), (3.8)

where J(u, ψ;φ) is the functional determinant (the Jacobian) of the change of field

variables C : F → F , C(u, ψ) = φ := UDC(ψ, u−1). The computation of J(u, ψ;φ)

relies on the computation of the functional differential dC (see Appendix A). Since

the gauge fixing map F : F → V is ideal, the number of degrees of freedom in V ,

that is dim V , is larger than the number of degrees of freedom in G, that is dimG.

Let us assume that dimV = dimG, so that there is no over-determination of u ∈ G

by F.

The bijective map F̂ : F → F̂(F) ⊂ D satisfies the constraint F̃(φ) = F ◦
DC(φ, F̂(φ)) = 0 for any φ ∈ F , so that, for any X ∈ TφF , one has dF̃[φ](X) = 0.

By the composition law, one gets 0 = dF̃[φ](X) = dF[DCF̂(φ)](dDCF̂[φ](X)) while

dDCF̂[φ](X) = dFDC[φ, F̂(φ)](X) + dDDC[φ, F̂(φ)](dF̂[φ](X)), so that

0 = dF[DCF̂(φ)]
(
dFDC[φ, F̂(φ)](X)

)
+ dF[DCF̂(φ)]

(
dDDC[φ, F̂(φ)]

(
dF̂[φ](X)

))
= dF (F ◦DC)[φ, F̂(φ)](X) + dD(F ◦DC)[φ, F̂(φ)] ◦ dF̂[φ](X).

In the FPGFP, it is assumed that, for any φ ∈ F , dG(F ◦ GT)[φ, γ] : TγG →
TF◦GT(φ,γ)V is invertible, since its determinant is ΔFP[φ

γ ]. This invertibility is a

technical property at the level of functional spaces, so that it can be assumed in

our framework as well. This implies the invertibility of the map dD(F ◦DC)[φ, u] :

TuD → TF◦DC(φ,u)V for any φ ∈ F and u ∈ D (the hypothesis dimV = dimG

applies here). This entails

dF̂[φ](X) = −dD(F ◦DC)[φ, u]−1 ◦ dF (F ◦DC)[φ, F̂(φ)](X).

This expression gives the functional variation du[φ] of u = F̂(φ) along φ in the

change of field variables F � φ �→ (u, ψ) ∈ F. Now, one can look at the variation

dψ[φ] of ψ = DC(φ, F̂(φ)) in this change of field variables. One has

dψ[φ](X) = dFDC[φ, F̂(φ)](X) + dDDC[φ, F̂(φ)]
(
dF̂[φ](X)

)
.

The determinant J(φ;u, ψ) of the linear map (du[φ],dψ[φ]) : TφF → T(u,ψ)F ⊂
TuF̂(F) × TψF

−1(0) ⊂ TuD × TψIF (with u = F̂(φ) and ψ = DC(φ, F̂(φ))) is the

inverse of the Jacobian J(u, ψ;φ) we have to compute in (3.8). This determinant

depends on the three functional differentials dFDC, dDDC and dF. The two first
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depend only on the field content of the model (recall that DC is a gauge-like trans-

formations of the fields) while the last one is the only one which depends on the

gauge fixing map F.

Note that this approach is computationally impractical since it requires to char-

acterize the space F ⊂ D×IF , which is not an easy task at first sight, especially if

F is defined in terms of some differential operator. It requires also to evaluate the

Jacobian J(φ;u, ψ), and then its inverse J(u, ψ;φ). In a practical approach, it is

easier to rely on the FPGFP which has proved to be very effective. Indeed, for the

FPGFP the spaces on which the integration is performed turn out to be field space

D×IF , while in the displayed approach the integration must be performed on the

subspace F ⊂ D× IF which is difficult to characterize. Moreover, the determinant

to compute, ΔFP[ψ], is quite manageable in the context of QFT when one uses the

usual trick of the Berezin integration along Grassmann field variables.

3.4. Field variables dependence on the gauge fixing map

In the two computations of the functional integral presented above for Z, the main

step is the change of field variables F � φ �→ (u = F̂(φ), ψ = DCF̂(φ)) ∈ D × IF
defined in Sec. 3.3. It is explicit in (3.8) but it is only implicit in (3.7) since the

Dirac δ-function selects precisely ψ = DCF̂(φ).

This change of field variables depends on the ideal gauge fixing map F (in fact,

it is defined by it through the DFM). Let us understand how this dependence is

carried forward onto the invariant field ψ. Let us consider a parametrized family of

ideal gauge fixing maps Fε such that F0 = F. For any ψ ∈ IF , let us define

v|F(ψ) :=
dFε(ψ)

dε |ε=0
∈ TF(ψ)V .

A simple choice for such a family is for instance to consider v ∈ V and Fε(ψ) =

F(ψ) + εv, for which v|F(ψ) = v is constant.

Let us fix φ ∈ F and define uε := F̂ε(φ) and u|u := duε

dε |ε=0
∈ TuD. Then, one

has Fε ◦ DC(φ, uε) = 0 for any ε. Upon taking the derivative along ε at ε = 0, one

gets v|F(ψ)+dD(F◦DC)[φ, u](u|u) = 0 with u = u0 and ψ := DC(φ, u). We assume,

as before, that dD(F ◦DC)[φ, u] is invertible which yields

u|u = −dD(F ◦DC)[φ, u]−1(v|F(ψ)). (3.9)

Let us define the tangent vector ξ := TuLu−1u|u ∈ TeD, and write uε = LuUξ(ε) =

uUξ(ε) where Lu is the left multiplication by u in G, Uξ(ε) is a curve in D with

Uξ(0) = e, and
dUξ(ε)
dε |ε=0

= ξ.h Note that under a gauge transformation, Uξ(ε),

and so ξ, are invariant since u supports on the left the entire right action of G
(uγ = γ−1u).

hOne may think of Uξ(ε) as the curve eεξ.
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Let us consider now the family of dressed fields ψε := DC(φ, uε) (with ψ = ψ0)

and let δξψ := dψε

dε |ε=0
∈ TψIF . With the previous parametrization, one gets

δξψ = −dDDC[φ, u] ◦ dD(F ◦DC)[φ, u]−1
(
v|F(ψ)

)
= dDDC[φ, u] ◦ TeLu(ξ).

(3.10)

One can introduce a second parametrization along the gauge group as γε := uεu
−1 =

uUξ(ε)u
−1 ∈ G. Then ξ̃ := dγε

dε |ε=0
= Adu ξ ∈ LieG = TeG and ψε = DC(φ, γεu) =

DC(GT(φ, γε), u). Under a gauge transformation by γ ∈ G, ξ̃ transforms as ξ̃ �→
Adγ−1 ξ̃. Denote by δξ̃φ := dGGT[φ, e](ξ̃) the infinitesimal gauge transformation of

φ along ξ̃. Then one gets another expression for δξψ:

δξψ = dFDC[φ, u](δξ̃φ). (3.11)

In (3.11), since δξ̃φ is an infinitesimal gauge transformation, δξψ can be understood

as an infinitesimal version of the dressing at (φ, u) applied to δξ̃φ. In order to

fully understand (3.10), let us forget about field spaces and look only at their

underlying functional spaces. Then one has to compute the derivative along ε of

GA(φ, uUξ(ε)) = GA(GA(φ, u), Uξ(ε)) = GA(ψ,Uξ(ε)), which amounts to

δξψ = dGGA[ψ, e](ξ). (3.12)

As a functional relation, this expression depends only on ψ and ξ, and not on φ

and u (this was not obvious at first sight in (3.10)). It is the functional expression

of an infinitesimal gauge transformation of ψ along ξ. But note that both ψ and ξ

support trivial actions of the gauge group (and so of its Lie algebra). Hence, this

functional relation cannot be interpreted as a true gauge transformation acting on

field spaces.

In other words, δξψ in (3.12) has only an interpretation in terms of the (differ-

ential) geometry of functional spaces, but not in terms of the infinitesimal gauge

group actions. Nevertheless, using the DFM (and more precisely an infinitesimal

version of the dressing), it is still possible to interpret δξψ in terms of field spaces

using the true infinitesimal gauge transformation δξ̃φ in (3.11) as remarked before.

A similar reasoning in terms of functional spaces yields an equivalent relation to

(3.9) for ξ:

ξ = −dG(F ◦GA)[ψ, e]−1(v|F(ψ)). (3.13)

Once again, this expression depends only on the field variable ψ.

The variation ψ �→ ψ + δξψ does not affect the action S(ψ) since it is formally

gauge-invariant.

4. Rξ Gauge Fixing and Unitary Gauge

It is convenient to change our mathematical conventions on gauge fields into more

physical ones, for instance conventions close to [19], in order to compare the follow-

ing developments to the ones in the literature.
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Here we consider the situation G = SU(n) or G = U(1). Our mathematical

notations rely on the following conventions. Let {Ea} be a basis of antihermitian

elements in g = su(n) (= {antihermitian n × n matrices with zero trace}) or g =

u(1) = iR, such that [Ea, Eb] = CcabEc. A connection 1-form A ∈ A (Yang-Mills

gauge potential) can be decomposed as A = AaμEadx
μ = Aμdx

μ with real fields

Aaμ, so that A†
μ = −Aμ. An element γ ∈ G close to the identity can be written

as γ = eε = 1 + εaEa + O(ε2) with ε = εaEa, so that an infinitesimal gauge

transformation takes the form Aεμ = Aμ +Dμε+O(ε2) where Dμε = ∂με+ [Aμ, ε].

To stick to standard physical notations, we rely on the following conventions.

Let ta := iEa be Hermitian elements in g, so that [ta, tb] = iCcabtc. Let g be the

coupling parameter for the interaction described by G, and let A = Aaμtadx
μ =

Aμdx
μ := ig−1A = g−1Aaμtadx

μ be the physical gauge field, i.e. Aaμ = g−1Aaμ and

A†
μ = Aμ. Its gauge field strength is Fμν = ∂μAν − ∂νAμ − ig[Aμ,Aν ], that is F

a
μν =

∂μA
a
ν−∂νAaμ+gCabcAbμAcν . Then a gauge transformation close to the identity can be

written as γ = eiα
ata = 1+iαata+O(α2) with α = αata. The gauge transformation

of A is Aγμ = γ−1Aμγ + ig−1γ−1∂μγ, so that Aαμ = Aμ − g−1Dμα + O(α2) with

Dμα = ∂μα − ig[Aμ, α]. A gauge field φ ∈ E is subject to the covariant derivative

Dμφ = ∂μφ − igAaμη(ta)φ where η is the representation of g on E induced by the

representation 
 of G on E.

The usual way to relate fields in the Rξ gauge and fields in the unitary gauge

is to take the limit ξ → ∞ at the level of Feynman rules and to identify the

corresponding propagators with the ones obtained in the unitary gauge.

In our framework, the Rξ gauge and the unitary gauge can be written in terms

of dressing fields. Thanks to the DFM, the relation between fields in both gauges

is achieved through the limit ξ → ∞ in the spaces of type IF once all the fields of

the original theory are dressed via the field-composer DC. The Lagrangians in the

two gauges are thus related when taking the limit.

Let us illustrate this point with two situations.

Let us first consider the simple situation of an Abelien Higgs model with G =

U(1) defined by the Lagrangian

L[A, φ] := [(∂μ − ieAμ)φ]
†[(∂μ − ieAμ)φ]− V (φ)− 1

4
FμνF

μν , (4.1)

where φ ∈ E (with E = C) is a C-valued field (here t1 = 1, η = Id, and g = e), and

V (φ) = μ2

2 φ
†φ+ λ

4 (φ
†φ)2.

For any nonzero real parameter ξ and any v > 0, consider the Rξ gauge

fixing map

Fξ,v,e(A, φ) := ∂μAμ − evξχ ∈ LieG,

where φ is written as φ = v+h√
2
eiχ, which defines h and χ. This is usually written as

the extra term in the Lagrangian:

FLξ,v,e(A, φ) := − 1

2ξ
(∂μAμ − evξχ)2.
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The gauge fixing condition Fξ,v,e(A
u, φu) = 0, to be solved for u written as u = eiα,

gives the equation ∂μAμ − ∂μ∂μα− evξ(χ− α) = 0 to be solved for α, that is

(∂μ∂μ − evξ)α = ∂μAμ − evξχ. (4.2)

This equation determines a uniquei solution αevξ(A, φ), and so a unique dressing

field uevξ(A, φ) ∈ D. As for the Lorenz gauge condition, αevξ(A, φ) is nonlocal in

the fields A and φ since one has to invert the Laplacian operator to write αevξ in

terms of A and φ.

In [1], a unitary dressing field u has been defined such that φ = ρu (polar

decomposition) where ρ := |φ|. This dressing field was used to dress φ and A into

gauge-invariant fields and the Lagrangian written in terms of these dressed fields is

the so-called “Lagrangian in the unitary gauge”.

Taking the limit ξ → ∞ in (4.2), makes senses if v �= 0. Then one gets the

simpler equation α∞(A, φ) = χ, that is u∞(A, φ) = u∞(φ) = eiχ for φ = ρeiχ, so

that, in the space of dressing fields, limξ→∞ uevξ(A, φ) = u∞(φ) = u is the unitary

dressing field. Note that this limit simplifies the equation in such a way that u∞(φ)

is now local in terms of φ (and does not depend anymore on A). Moreover, u∞(φ)

does not depend on the choice of v �= 0, as expected.

This procedure extends to a more general situation of non-Abelian fields. Let

φ = (φ1, . . . , φ2N ) be real fields subjected to a real representation 
 of G = SU(N).

Denote by Ta := η(ta) the real antisymmetric generators of this representation so

that the covariant derivative isDμφ = ∂μφ+gA
a
μTaφ [19, Chap. 20]. Let Âμ := AaμTa

(note that Âᵀ
μ = −Âμ where ᵀ is the transpose matrix) for which Âγμ = γ−1Âμγ +

g−1γ−1∂μγ. Consider the Lagrangian L[A, φ] :=
1
2 (Dμφ)

ᵀ(Dμφ)−V (φ)− 1
4FμνF

μν .

Let φ0 denote a fixed constant configuration of the φ field that minimizes V (φ) and

let us use the new field ϕ defined by φ =: φ0 + ϕ. For any γ ∈ G, we define the

gauge-transformed ϕγ of ϕ as ϕγ := 
γ−1(φ0 + ϕ)− φ0.

In the expansion of 1
2 (Dμφ)

ᵀ(Dμφ), we are interested in terms in Â times ϕ.

These are 1
2g(∂μϕ)

ᵀÂμφ0 − 1
2gφ

ᵀ
0Âμ(∂

μϕ) = g(∂μϕ)
ᵀÂμφ0. Using integration by

parts, this term is −gϕᵀ(∂μÂμ)φ0 under the integration over space-time. The Rξ
gauge fixing condition is chosen in order to cancel this term. As an extra term in

the Lagrangian, it is

FL(Â, ϕ) = − 1

2ξ

∑
a

(∂μAaμ − gξϕᵀT aφ0)2

with T a := KabTb for the Killing metric K of SU(N) where Kab ∝ tr(TaTb). This

extra term is associated to the gauge fixing map defined by

Fξ,φ0,g(Â, ϕ) := Faξ,φ0,g(Â, ϕ)Ta ∈ LieG,

where

Faξ,φ0,g(Â, ϕ) := ∂μAaμ − gξϕᵀT aφ0.

iThanks to conditions at infinity in the Euclidean space.

2550029-21



May 28, 2025 11:47 WSPC/S0219-8878 IJGMMP-J043 2550029

M. Guillaud, S. Lazzarini & T. Masson

The term FL(Â, ϕ) is nothing but K(Fξ,φ0,g(Â, ϕ),Fξ,φ0,g(Â, ϕ)) up to a factor

which depends on normalizations when the Ta’s form an orthogonal basis for K.

For any u ∈ D, define û := 
u ∈ GL2N(R). Then, one has to solve for u ∈ D the

nonlinear second-order differential equation

g−1û−1∂μ∂
μû+ g(∂μû

−1)(∂μû) + (∂μû
−1)Âμû+ û−1Âμ(∂μû) + û−1(∂μÂ

μ)û

+ gξ(φᵀ0T
aû−1ϕ)Ta + gξ(φᵀ0T

aû−1φ0)Ta − gξ(φᵀ0T
aφ0)Ta = 0. (4.3)

Note that the last term in the LHS is zero since T a is antisymmetric. In case

the gauge fixing map Fξ,φ0,g is ideal, this equation defines a unique dressing field

uξ,g,φ0(A, φ) ∈ D, which is clearly a nonlocal expression in terms of the fields A and

φ.

The limit ξ → ∞ (g and φ0 fixed) of Eq. (4.3) reduces to the simple family of

algebraic equations

φᵀ0T
aû−1φ = 0 for any a. (4.4)

This system of equations is the one defining the unitary gauge for a very general

model of broken local symmetries, see for instance [4, Eq. (3.2)]. This equation

defines a unique dressing field u∞,φ0(φ) ∈ D which is local in terms of φ and does

not depend on A.

So, as for the case of the Abelien Higgs model, the limit ξ → ∞ can be performed

in the space of dressing fields D as limξ→∞ uξ,g,φ0(A, φ) = u∞,φ0(φ) and it goes from

a nonlocal expression in terms of the fields A and φ to a local expression in terms

of φ alone. Note that (4.4) implies that u∞,φ0(φ) only depends on the direction of

φ0 �= 0.

The above-mentioned limit procedures are not rigorously established from a

mathematical point of view. In the Abelian case, one can consider the Fourier

transform of the original equation (4.2) to get an algebraic equation for which the

limit procedure is clear. But for non-Abelian fields, it requires more mathemati-

cal developments to consider the limit from Eq. (4.3) to Eq. (4.4). Our heuristic

approach should be supported by topological considerations on field spaces (intro-

ducing Sobolev norms for instance), which is out of the scope of this paper.

5. Conclusion

In this paper, we have revisited the DFM within a new mathematical framework

tailored to QFT. This framework distinguishes between functional spaces and field

spaces, the latter being functional spaces with specific actions of the gauge group

according to the model at hand. We have shown that the gauge fixing procedure

performed in the functional path integral of QFT is an example of the dressing

method. Additionally, we illustrated how the Fadeev–Popov gauge fixing procedure

can be reformulated using this new formalism. Notably, with Rξ gauge fixing con-

ditions and “unitary gauges” now understood in terms of dressing fields, we showed

that taking the limit ξ → ∞ can be realized within the space of dressing fields. As
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an outcome, the locality of the dressing field is restored. This provides new insights

on the relationship between these two types of gauge.

Appendix A. Functional Differentials and some Jacobians

We present in this appendix some notations concerning functional differentials

adapted to our framework. These definitions have been used in the main text. Here,

we use them to compute some Jacobians associated to changes of field variables in

the functional integrals that are induced by the DFM in the unitary gauge. Some

of these computations have been presented before in [6], but in a less complete

manner.

Let Fi be spaces and let Fi be their associated functional spaces on an open set

U of M . We will look at Fi as “infinite dimensional smooth manifolds” on which

it is possible to consider some structures usually defined on ordinary manifolds.

Obviously, this would require a lot of work to define precisely smoothness on these

spaces and smoothness of maps between these spaces (as considered in the follow-

ing). It is out of the scope of this paper to do that, since we will only be interested

in the algebraic part of the obtained structures, not in their analytic existence.j

The only basic structure we formally introduce is the tangent space TfiFi of Fi at

fi ∈ Fi, which consists of all the γ̇(0) = dγ
dt |t=0

for γ : (−ε, ε) → Fi any smooth

curve in Fi such that γ(0) = fi (here ε > 0). This reproduces the usual definition

of the tangent space in ordinary differential geometry.

Let C : F1 → F2 be a map between two functional spaces. For any f1 ∈ F1, the

linear tangent map of C at fi is the linear map dC[f1] : Tf1F1 → TC(f1)F2 defined

by dC[f1](γ̇(0)) :=
dC◦γ(t)

dt |t=0
for any smooth curve γ as before. Thus, dC will be

called the functional differential of C. This again reproduces the usual definition.

This definition is also a general version of the “functional derivative” introduced in

field theory, where Fi denotes vector spaces and γ(t) = fi + tXi for a Xi ∈ F1.

For C1 : F1 → F2 and C2 : F2 → F3, one has the composition law (or chain

rule) d(C2 ◦ C1)[f1](X1) = dC2[C1(f1)](dC1[f1](X1)) for any X1 ∈ Tf1F1.

For C : F1 × F2 → F3, we denote by dFiC, for i = 1, 2, the functional differen-

tials along the two functional spaces Fi, where dFiC[f1, f2] : TfiFi → TC(f1,f2)F3.

The total functional differential is then dC[f1, f2](X1, X2) = dF1C[f1, f2](X1) +

dF2C[f1, f2](X2) for any Xi ∈ TfiFi. We can write this identity as dC =

dF1C + dF2C.

Let us consider a change of field variables given by C : F1 → F2 (where F1,

respectively, F2, collects all the initial fields, respectively, the final fields). The cor-

responding Jacobian to be computed in the functional integration is the functional

determinant of the linear map dC[f1]. Such a computation was already proposed

jIn fact, we will consider the geometry of these spaces using an approach quite similar to the one
developed and described in [20, 21].
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in [6] for the DFM applied to the electro-weak sector of the standard model, but

there, it was not completely described.

Let us first consider the Abelian case described by the Lagrangian (1.1). The

original field variables in the functional integral are (A, φ) ∈ R
m × C (remember

that Aμ ∈ iu(1) = R). The dressing field u ∈ U(1) for the unitary gauge is defined

by writing the polar decomposition φ = ρu with ρ ∈ R∗
+. Let a = DC(A, u) =

A + i
eu

−1du ∈ R
m. Then the new variables are (a, ρ, u) ∈ R

m × R
∗
+ × U(1). For

the forthcoming computations, it is convenient to change the variable ρ ∈ R
∗
+

into the variable σ ∈ R by the relation ρ = eσ. We then define the mapping

C : F1 := R
m×R×U(1) → F2 := R

m×C as C(a, σ, u) = (A, φ) = (a+ i
eudu

−1, eσu).

Let ã ∈ R
m, σ̃ ∈ R and α̃ ∈ R and define γ(t) := (a + tã, σ + tσ̃, ueitα̃) a curve in

F1 such that γ(0) = (a, σ, u) and γ̇(0) = (ã, σ̃, iα̃) ∈ T(a,σ,u)F1 � R
m × R× u(1). A

straightforward computation then gives dC[a, σ, u](ã, σ̃, iα̃) = (ã+ 1
edα̃, (σ̃+iα̃)e

σu).

The Jacobian for this change of variables is then the functional determinant of the

functional operator written in matrix form acting on the components (ã, σ̃, α̃):

⎛
⎜⎝ 1m 01×m

1

e
d

0m×2 eσu ieσu

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1m 01×m
1

e
d

0m×1 φ1 −φ2
0m×1 φ2 φ1

⎞
⎟⎟⎟⎟⎠

for φ = eσu = φ1 + iφ2. This Jacobian has to be composed with the one for

the change of variables ρ �→ σ = ln ρ, which is the determinant of the operator

TρR
∗
+ � ρ̃ �→ σ̃ := ρ−1ρ̃ ∈ TσR. The complete operator to consider for the Jacobian

associated to the change of field variables (a, ρ, u) �→ (A, φ) is then written in matrix

form on the components (ã, ρ̃, α̃) as

M =

⎛
⎜⎝ 1m 01×m

1

e
d

0m×2 u ieσu

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1m 01×m
1

e
d

0m×1 ρ−1φ1 −φ2
0m×1 ρ−1φ2 φ1

⎞
⎟⎟⎟⎟⎠.

This is a matrix block operator of the form M =
(

1m D
0m×2 E

)
. Its determinant

can be evaluated using DetM = eTr lnM where the definition of lnM relies on

the usual series for ln(1 + x). Since (M − 1)n =
(

0m D(E−12)
n−1

0m×2 (E−12)
n

)
, on the

diagonal of lnM one gets 0m and lnE. Applying the trace and the exponen-

tial, one then gets DetM = eTr lnE = DetE. The operator E has the form

Eab(x, y) = Eab(x)δ
(m)(x − y) so that DetE = exp[δ(m)(0)

∫
dmx ln(detE(x))]

(see for instance [22]) with detE = |φ| = ρ so that

DetM = exp

[
i

∫
dmx δ(m)(0) ln ρ(x)

]
.

For the SU(2) group, a similar computation can be performed. The original

field variables are (A, φ) ∈ R
3m×C

2, the dressing field u is uniquely defined by the
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decomposition φ = ηu ( 01 ) with η = ‖φ‖ ∈ R
∗
+, and the dressed gauge potential is

a = DC(A, u) = u−1Au + i
gu

−1du ∈ R
3m. The new variables are then (a, η, u) ∈

R
3m × R∗

+ × SU(2). As before, we use the variable σ := ln η ∈ R, so that C :

F1 := R
3m × R × SU(2) → F2 := R

2m × C
2 is given by C(a, σ, u) = (A, φ) =

(uau−1 + i
gudu

−1, eσu ( 01 )). The functional differential of C is computed using the

curve γ(t) := (a+ tã, σ + tσ̃, eitα̃u) in F1 with, for any (α̃a) ∈ R
3, α̃ := α̃aτa where

the τa’s are the Pauli matrices. R3 is identified with su(2) through (α̃a) �→ iα̃.

One then gets dC[a, σ, u](ã, σ̃, iα̃) = (uãu−1 + 1
gDα̃, (σ̃ + iα̃)φ) where as before

Dα̃ = dα̃− ig[A, α̃]. Using the explicit expressions for the Pauli matrices, this is the

operator written in matrix form in components (ã, σ̃, α̃) as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ad(m)
u 01×3m

1

g
D

03m×1 φ1 −φ4 φ3 −φ2
03m×1 φ2 φ3 φ4 φ1

03m×1 φ3 −φ2 −φ1 φ4

03m×1 φ4 φ1 −φ2 −φ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with φ =
(
φ1+iφ2

φ3+iφ4

)
and where Ad(m)

u acts as Adu on the m su(2)-valued fields ãμ.

As before, one has to compose with the operator associated to the change of field

variables η �→ σ = ln η. One thus gets the complete operator to consider for the

Jacobian associated to the change of field variables (a, η, u) �→ (A, φ):

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ad(m)
u 01×3m

1

g
D

03m×1 η−1φ1 −φ4 φ3 −φ2
03m×1 η−1φ2 φ3 φ4 φ1

03m×1 η−1φ3 −φ2 −φ1 φ4

03m×1 η−1φ4 φ1 −φ2 −φ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Following the same idea as before, the matrix block structure M =
(

E1 D
03m×4 E2

)
of this operator gives DetM = (DetE1)(DetE2) with Ei,ab(x, y) = Ei,ab(x)δ

(m)

(x− y). Finally, one has

DetM = exp

[
i

∫
dmx 3δ(m)(0) ln η(x)

]
.

This relation can be compared to [23, Eqs. (3.8) and (3.9)], but with the main

difference that in the DFM, the choice of a minimum in the potential V (φ) can be

delayed after the change of field variables, so that the VEV v does not enter into

the game here. We refer to [1, 2] for comments on this aspect of this approach.
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