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1. Introduction

In this paper, we continue the investigation started in [14] on a new approach to propose a framework in Non-
Commutative Gauge Field Theory (NCGFT) to construct “unifying theories”. This framework relies on Approximately Finite 
dimensional (A F ) C∗-algebras (see [1,6,16] for instance). As explained in [14] (to which we refer for more details), the idea 
is to take advantage of two features of A F -algebras. On the one hand, it is a direct limit of finite-dimensional C∗-algebra, 
which are, up to isomorphisms, finite sum of matrix algebras over C. So one has a way to “approximate” an infinite di-
mensional algebra by finite dimensional structures. On the other hand, NCGFTs have been investigated on algebras of the 
type C∞(M) ⊗A (“Almost Commutative Manifolds”) where A is a finite dimension algebra and (M, g) is a Riemannian spin 
manifold equipped with its canonical spectral triple. These NCGFTs are naturally of Yang-Mills-Higgs type, and the propo-
sition of a reconstruction of the Standard Model of Particles Physics (in [2] for instance, see also [19] and [20] for reviews 
and references) shows the relevance and interest of this approach to Gauge Field Theories (GFT).

In the past, tentatives have been proposed to extend the framework of Almost Commutative algebras in order to go 
beyond the Standard Model of Particles Physics, see for instance [11,17,18]. One can consider that the present work is 
part of this line of inquiry, taking a different route. Namely, let A = ∪n≥0An be an A F algebra, where An are finite 
dimensional algebras. It is convenient to describe A as the direct limit A = lim−→An of the inductive sequence of the 
finite dimensional algebras {(An, φn,m) / 0 ≤ n < m} where φn,m : An → Am are one-to-one unital homomorphisms that 
satisfy the composition property φm,p ◦ φn,m = φn,p for any 0 ≤ n < m < p. From these relations, one needs only to de-
scribe the homomorphisms φn,n+1 : An → An+1. For any n ≥ 0, let us introduce an odd (resp. even) real spectral triple 
(An, Hn, Dn, Jn) (resp. (An, Hn, Dn, Jn, γn)). The purpose of the present paper is to define a good notion of compatibility in-
herited from the maps φn,n+1 between these spectral triples such that one can consider the sequence {(An, Hn, Dn, Jn)}n≥0
(resp. {(An, Hn, Dn, Jn, γn)}n≥0) as a finite dimensional approximation of a limiting spectral triple (A, H, D, J ) (resp. 
(A, H, D, J , γ )) on A. Thanks to the compatibility condition that is required between two successive spectral triples in 
this sequence, their spectral actions can be compared so that a “Limiting Non-Commutative Gauge Field Theory” on A can 
be considered (at least in a formal sense) which is approximated by finite dimensional NCGFTs.

From a physical point of view, one can consider our contribution as a proposal for a general framework to elabo-
rate NCGFTs in a GUT-like way. The usual GUT are based on a large gauge group from which, after applying successive 
Spontaneous Symmetry Breaking Mechanisms (SSBM), one gets a smaller gauge group corresponding to the desired phe-
nomenology. In our approach, we consider two finite dimensional algebras A and B, corresponding, in the usual NCGFT 
approach, to two gauge groups (modulo the tensor product with the canonical spectral triple of a compact Riemannian spin 
manifold). Let us denote by NCGFTA and NCGFTB the corresponding NCGFTs. If φ :A → B is a one-to-one homomorphism, 
then NCGFTB has a larger gauge group than NCGFTA , which provides a GUT-like situation, and the former may contain 
more degrees of freedom than the latter. In order to be able to compare these two NCGFTs, we introduce a constraint at the 
level of the two spectral triples in the form of a notion of “φ-compatibility”. This notion of φ-compatibility is proposed for 
generic algebras in Sect. 4.1, but it reveals its true richness for A F -algebras, see Sect. 4.3.

As a matter of fact, two notions of φ-compatibility are proposed: a so-called φ-compatibility (Definition 4.2) and a so-
called strong φ-compatibility (Definition 4.3), which is stronger, as its name suggests. The strong φ-compatibility is more 
natural from a mathematical point of view, and it has indeed been used in the literature (see for instance [3], [10], [7]). 
For instance, in Proposition 4.6 we show how it is compatible with composition of operators and with adjointness, in 
Proposition 4.12 we show that it constrains the K O -dimensions to be the same, and in Proposition 4.13 we show how it 
is compatible with unitary equivalence of real spectral triples. But, strong φ-compatibility is too restrictive from a physical 
point of view, since, for instance, it imposes that the Dirac operator DB cannot couple inherited and new degrees of 
freedom at the level of B. From a physical point of view, φ-compatibility looks more natural since it is based on constraints 
on inherited degrees of freedom only, so that, for instance, it allows the Dirac operator DB to couple inherited and new 
degrees of freedom.

As mentioned in [14], we are not aware of any empirical fact suggesting that such a radical new approach could be 
suitable for Particles Physics. Nevertheless the study of this mathematical framework reveals some relevant and compelling 
structures, and we feel that the forecasted phenomenological investigations will make appear nice ways to explore different 
kinds of unifications.

In [14], we investigated this framework using derivation-based noncommutative geometry, and we exhibited interesting 
results from the point of view of the SSBM. In the present paper, we focus on the spectral triple approach. One main result 
of the paper is the description of what can be called a “lifting” of arrows in a Bratteli diagram (which characterizes the given 
A F -algebra) to arrows between Krajewski diagrams which describe finite dimensional real spectral triples. Another result is 
the possible comparison between successive spectral actions defined by the spectral triples introduced in a compatible way 
2
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in the sequence {(An, Hn, Dn, Jn)}n≥0 or {(An, Hn, Dn, Jn, γn)}n≥0. This comparison permits to get an idea of the physical 
content of the “unifying” NCGFT that could be formally considered in the limit.

The paper is organized as follows. In Sect. 2, we recall some main facts about NCGFTs and spectral triples. Since this is a 
well-known subject, we focus on the structures that will be used later in the paper, in particular the universal differential 
calculus. In Sect. 3, we recall the classification of finite (real) spectral triples using Krajewski diagrams. We outline the steps 
of this classification in detail since some intermediate results that lead to these diagrams will be used later. In Sect. 4, 
we describe how to lift arrows in a Bratteli diagram to arrows between Krajewski diagrams. This results leads to the 
construction of a sequence of NCGFTs on top of an A F -algebra. We focus mainly on the “one step structure”. Finally, in 
Sect. 5, we show how spectral actions are related in this sequence, taking one step in this sequence as an illustration. We 
show, in a formal way, that the spectral action at one step in the sequence is part of the spectral action for the next step. It 
is out of the scope of this paper to construct realistic models. The physical implications of the corresponding NCGFT limit 
will not be discussed in details in this paper: only some general results related to other works will be presented.

2. Spectral triples and gauge fields theories

In this section, we recall some main facts about the construction of Gauge Fields Theories from Spectral Triples. We also 
take the opportunity to introduce notations for further developments. We refer to [4,13,20] for further details.

Let (A, H, D) be a spectral triple and denote by π : A → B(H) the representation on the Hilbert space H. This makes 
H a left A-module. We will always suppose that A is unital, with unit 1. In the following, we will not need to consider 
the analytic axioms since we consider only finite dimensional algebras and representations.

An even spectral triple (A, H, D, γ ) is equipped with a Z2-grading linear map γ on H such that γ † = γ , γ 2 = 1, 
γ D + Dγ = 0 (D is odd), γπ(a) = π(a)γ for any a ∈A (A is even). The grading γ induces a decomposition H =H+ ⊕H−
according to the eigenvalues ±1 of γ . Spectral triples without such a grading are referred to as odd spectral triples.

A real spectral triple (A, H, D, J ) is equipped with a map J : H → H which is an anti-unitary operator: 〈 Jψ1, Jψ2〉 =
〈ψ2, ψ1〉 for any ψ1, ψ2 ∈H such that [a, Jb∗ J−1] = 0 (commutant property) and [[D, a], Jb∗ J−1] = 0 (first-order condition) 
for any a, b ∈A. The map H×A →H defined by (ξ, a) �→ Ja∗ J−1ξ defines a right module structure on H so that H is a A-
bimodule. We denote by a◦ the element in the opposite algebra A◦ which corresponds to a ∈A.1 Then, using a◦ �→ Ja∗ J−1

as a left representation of A◦ , H becomes a left A ⊗ A◦-module. We will frequently write a◦ψ = Ja∗ J−1ψ = ψa for any 
a ∈A and ψ ∈H. We define Ae :=A ⊗A◦ . An even real spectral triple is an uplet (A, H, D, J , γ ) with γ as before. Notice 
then that γ a◦ = a◦γ for any a ∈A, and so γ commutes with the left representation of Ae on H.

In the odd and even cases, the K O -dimensions n mod 8 are given in Table 1, where the numbers ε, ε′, ε′′ = ±1 are 
defined by the requirements J 2 = ε , J D = ε′D J , and Jγ = ε′′γ J (in the even case). When J 2 = −1 and H is finite 
dimensional, then its dimension is even (see [20, Lemma 3.8] for instance).

Two spectral triples (A, H, D) and (A′, H′, D ′) are unitary equivalent when there exists a unitary operator U : H → H′
and an algebra isomorphism φ :A →A′ such that π ′ ◦φ = UπU−1, D ′ = U DU−1, J ′ = U J U−1, and γ ′ = Uγ U−1, whenever 
the operators J , J ′ , γ and γ ′ exist.

A symmetry of a spectral triple is a unitary equivalence between two spectral triples such that H′ = H, A′ = A, and 
π ′ = π , so that U : H → H and φ ∈ Aut(A), i.e. a symmetry acts only on D , J and γ . In the following, we will only 
consider automorphisms φ which are A-inner, that is, there is a unitary u ∈ U(A) such that φu(a) = uau∗ . This unitary 
in A defines the unitary U = π(u) Jπ(u) J−1 : H → H, which can be interpreted as the conjugation with π(u) for the 
bimodule structure. A straightforward computation shows that U leaves J and γ invariant, and the Dirac operator D is 
modified as Du = D + π(u)[D, π(u)∗] + ε′ J (π(u)[D,π(u)∗]) J−1. The usual way to look at this relation is to interpret 
the commutator with D as a differential: this expression tells us that D is modified by the addition of two inhomogeneous 
terms of the form “udu−1”. Notice that, depending on the sign of ε′ , these two inhomogeneous terms produce a commutator 
or an anticommutator (from the point of view of the bimodule structure on H).

By definition, gauge transformations are inner symmetries of a spectral triple. In order to compensate for the inhomoge-
neous terms, we can use the same trick as in ordinary gauge field theory: add to the first order differential operator D a 
gauge potential. To do that, we need a convenient notion of noncommutative connections. Let us consider the universal dif-
ferential calculus (�•

U (A), dU ). A noncommutative connection is defined as a 1-form ω =∑
i a0

i dU a1
i ∈ �1

U (A) (finite sum). 
Elements in the vector spaces �n

U (A) can be represented as bounded operators on H by

πD
(∑

i a0
i dU a1

i · · · dU an
i

) :=∑
i π(a0

i )[D,π(a1
i )] · · · [D,π(an

i )].
Notice that the map πD is not a representation of the graded differential algebra �•

U (A). In particular, dU is not represented 
by the commutator [D, −] as a differential. The representation πD can also be used to represent n-forms on the right module 
structure of H by 

∑
i a0

i dU a1
i · · ·dU an

i �→ JπD
(∑

i a0
i dU a1

i · · ·dU an
i

)
J−1. The map πD may have a non trivial kernel, this is 

why we will prefer to use ω ∈ �1
U (A) instead of πD (ω) in some forthcoming constructions.

1 A �A◦ as vector spaces by the formal map A � a �→ a◦ ∈ A◦ and the new product in A◦ is a◦b◦ := (ba)◦ .
3
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Table 1
K O -dimensions of real spectral triples.

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Given D and ω ∈ �1
U (A), one defines the operator Dω := D + πD(ω) + ε′ JπD(ω) J−1. By a gauge transformation u ∈

U(A), Dω is transformed into

(Dω)u = D + π(u)πD(ω)π(u)∗ + π(u)[D,π(u)∗]
+ ε′ Jπ(u)πD(ω)π(u)∗ J−1 + ε′ Jπ(u)[D,π(u)∗] J−1.

This relation can be written as Dωu , where ωu ∈ �1
U (A) is a gauge transformation of ω defined as ωu := uωu∗ + udU u∗ .

In the following, we will need a convenient presentation of the differential graded algebra (�•
U (A), dU ). We follow the 

presentation in [12].2 For any n ≥ 0, let T nA := A⊗n+1
and let T •A = ⊕n≥0 T nA. This is a graded algebra for the product 

T nA ⊗ T n′A → T n+n′A defined by (a0 ⊗ · · · ⊗ an)(a′ 0 ⊗ · · · ⊗ a′n′
) := a0 ⊗ · · · ⊗ ana′ 0 ⊗ · · · ⊗ a′n′

. In particular, T •A is a 
bimodule over A = T 0A. Define dU : T nA → T n+1A as

dU (a0 ⊗ · · · ⊗ an) =1 ⊗ a0 ⊗ · · · ⊗ an

+∑n
p=1(−1)pa0 ⊗ · · · ⊗ ap−1 ⊗ 1 ⊗ ap ⊗ · · · ⊗ an

+ (−1)n+1a0 ⊗ · · · ⊗ an ⊗ 1.

Then dU is a derivation of degree 1 on the graded algebra T •A such that d2
U = 0. Notice that dU (a) = 1 ⊗ a − a ⊗ 1 on 

T 0A. It is convenient to introduce the maps ip
1(a0 ⊗ · · · ⊗ an) := a0 ⊗ · · · ⊗ ap−1 ⊗ 1 ⊗ ap ⊗ · · · ⊗ an for any p = 0, . . . , n + 1, 

with the convention that for p = 0, the tensor factor 1 is added before a0 (for p = n + 1, it is added after an). Then 
dU =∑n+1

p=0(−1)p ip
1 : T nA → T n+1A.

Let μ : T 1A → T 0A be the multiplication map a0 ⊗ a1 �→ a0a1, and define �1
U (A) := kerμ ⊂ T 1A. Then dU maps 

T 0A into �1
U (A) and �1

U (A) is generated, as a bimodule on A, by the dU a’s for a ∈ A.3 Let �0
U (A) := A and �n

U (A) :=
�1

U (A) ⊗A · · ·⊗A �1
U (A) (n times tensor product over A) for any n ≥ 2 and �•

U (A) := ⊕n≥0 �n
U (A). Equivalently, �•

U (A) is 
the graded sub-algebra of T •A generated by �0

U (A) and �1
U (A). One can then check that �n

U (A) ⊂ T nA is generated by 
the a0dU a1 · · ·dU an for a0, . . . , an ∈ A, so that dU restricts to maps �n

U (A) → �n+1
U (A), and then (�•

U (A), dU ) is a graded 
differential sub-algebra of (T •A, dU ).

Let us consider the case A = ⊕r
i=1 Ai , where Ai are unital algebras with units 1Ai . It will be useful in later discussions 

to use explicit presentations of (T •A, dU ) and (�•
U (A), dU ) constructed as follows. Let

T0A :=

⎧⎪⎨⎪⎩
⎛⎜⎝

a1 0 ··· 0
0 a2 ··· 0

...
. . .

0 0 ··· ar

⎞⎟⎠ | a = ⊕r
i=1 ai ∈ A

⎫⎪⎬⎪⎭ .

For any n ≥ 1 and any 1 ≤ i0, . . . , in ≤ r, let us introduce the notation A⊗
i0,...,in

:=Ai0 ⊗· · ·⊗Ain . Now, let Tn
i1,...,in−1

A be the 
set of matrices with entries in A⊗

i,i1,...,in−1, j at row i and column j. This can be schematically visualized as⎛⎜⎜⎜⎜⎝
A⊗

1,i1,...,in−1,1 A⊗
1,i1,...,in−1,2 · · · A⊗

1,i1,...,in−1,r

A⊗
2,i1,...,in−1,1 A⊗

2,i1,...,in−1,2 · · · A⊗
2,i1,...,in−1,r

...
...

...

A⊗
r,i1,...,in−1,1 A⊗

r,i1,...,in−1,2 · · · A⊗
r,i1,...,in−1,r

⎞⎟⎟⎟⎟⎠
where the first and last algebras in the tensor products will play a crucial role in the following. Combining the products

A⊗
i,i1,...,in−1,k ⊗A⊗

k, j1,..., jn′−1, j → A⊗
i,i1,...,in−1,k, j1,..., jn′−1, j,

defined by the product in Ak , and the usual rules for matrix multiplications, one gets products

2 We owe this presentation to Michel Dubois-Violette.
3 If ∑i a0

i ⊗ a1
i ∈ T 1A is such that μ(

∑
i a0

i ⊗ a1
i ) =∑

i a0
i a1

i = 0, then ∑i a0
i ⊗ a1

i =∑
i a0

i (1 ⊗ a1
i − a1

i ⊗ 1) = ∑
i a0

i dU a1
i .
4
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Tn
i1,...,in−1

A⊗Tn′
j1,..., jn′−1

A → ⊕r
k=1 T

n+n′
i1,...,in−1,k, j1,..., jn′−1

A.

Let us introduce

TnA := ⊕r
i1,...,in−1=1 T

n
i1,...,in−1

A and T•A := ⊕n≥0 T
nA

then T•A is a graded algebra for the global product induced by the products defined above. Explicitly, for ⊕r
i1,...,in−1=1

(
a0

i0
⊗

a1
i1

⊗ · · · ⊗ an−1
in−1

⊗ an
in

)r
i0,in=1 ∈ TnA and ⊕r

j1,..., jn′−1=1

(
b0

j0
⊗ b1

j1
⊗ · · · ⊗ bn′−1

jn′−1
⊗ bn′

jn′
)r

j0, jn′=1 ∈ Tn′A, their product in Tn+n′A
is

⊕r
i1,...,in−1,in,
j1,..., jn′−1=1

(
a0

i ⊗ a1
i1

⊗ · · · ⊗ an−1
in−1

⊗ an
in

b0
in

⊗ b1
j1

⊗ · · · ⊗ bn′−1
jn′−1

⊗ bn′
j

)r
i, j=1 (2.1)

Let μ be the component-wise product on T1A. Since multiplications by elements in Ai and A j are zero for i �= j, the 
resulting matrix is diagonal, and so one gets a natural map μ : T1A → T0A. Let �1

U (A) := kerμ ⊂ T1A and �•
U (A) ⊂ T•A

be the graded sub-algebra generated by �0
U (A) := T0A and �1

U (A). For any p = 0, . . . , n + 1, define ip
1 : Tn

i1,...,in−1
A →

⊕r
k=0 T

n+1
i1,...,ip−1,k,ip ,...,in−1

A by inserting 1 = ⊕r
k=1 1Ak component-wise, i.e. ip

1 = ⊕r
k=1 ip

1Ak
with obvious notations. Then one 

can define dU :=∑n+1
p=0(−1)p ip

1 : TnA → Tn+1A.

Proposition 2.1. The map dU is a differential on T•A and there is an isomorphism t : T •A → T•A of graded differential algebras 
which induces an isomorphism of the graded differential (sub)algebras �•

U (A) and �•
U (A).

Proof. For n = 0, one defines t(⊕r
i=1 ai) =

⎛⎝ a1 ··· 0

. . .
0 ··· ar

⎞⎠ ∈ T0A for any ⊕r
i=1 ai ∈ A. For n ≥ 1, consider any a0 ⊗ · · · ⊗ an ∈

T nA with ap = ⊕r
i=1 ap

i where ap
i ∈Ai . Expanding the tensor products along these direct sums, one gets a sum of terms of 

the form a0
i0

⊗· · ·⊗an
in

∈A⊗
i0,...,in

that we assemble as elements in Tn
i1,...,in−1

A. This defines the map t : T nA → TnA, which, 
for any n ≥ 0, is by construction an isomorphism of vector spaces. A straightforward computation shows that the product 
on T•A is such that t is a homomorphism of graded algebras.

By construction of ip
1 , one has t ◦ ip

1 = ip
1 ◦ t , so that dU is a differential on T•A and t is an isomorphism of differential 

algebras.
Finally, the map μ has been defined such that t ◦ μ = μ ◦ t so that t identifies �1

U (A) with �1
U (A), and so �•

U (A) with 
�•

U (A). �

Notice that, with 1̂ := t(1 ⊗ 1) ∈ T1A, one has dU t(a) = [1̂, t(a)] for any a ∈A.
We now suppose that there is an orthogonal decomposition of the Hilbert space H = ⊕r

i=1 Hi such that the representa-
tion decomposes along π = ⊕r

i=1 πi where πi is a representation of Ai on Hi : for any ψ = ⊕r
i=1 ψi ∈H and a = ⊕r

i=1 ai ∈A, 
π(a)ψ = ⊕r

i=1 πi(ai)ψi . Then the Dirac operator D decomposes as a r × r matrix of operators Di
j :Hi →H j .

We propose to write the representation πD as follows. Consider any ω ∈ �n
U (A) ⊂ TnA which decomposes along a sum 

of typical terms ⊕r
i1,...,in−1=1

(
a0

i ⊗ a1
i1

⊗ · · · ⊗ an−1
in−1

⊗ an
j

)r
i, j=1 ∈ TnA. Then πD(ω) is the r × r matrix of operators

πD(ω)
j
i =

∑
all terms at the
(i, j) entry in ω

∑r
i1,...,in−1=1 a0

i Di1
i a1

i1
Di2

i1
· · · Din−1

in−2
an−1

in−1
D j

in−1
an

j : H j → Hi (2.2)

Notice that, since ω ∈ �n
U (A), these sums define bounded operators because only commutators [D, a] could appear in 

πD(ω) (this is not necessarily the case for a generic element in TnA).

3. Normal forms of finite real spectral triples

In this section we recall all the important facts about finite real spectral triples that will be needed later. In particular 
their classification by Krajewski diagrams [9] (see also [20], in which a sketch of this classification is given). All the missing 
proofs of the results presented below are given in [15] with the same notations.

Many results rely on the following well-known technical result, which results from the existence of cyclic vectors in Cn

for the matrix multiplication:

Lemma 3.1. For any n ≥ 1 and any vector space V , a linear map 
 :Cn ⊗ V → Cn ⊗ V such that 
(aξ ⊗ v) = a
(ξ ⊗ v) for any 
a ∈ Mn(C), ξ ∈Cn and v ∈ V , reduces to a linear map ϕ : V → V such that 
(ξ ⊗ v) = ξ ⊗ ϕ(v).
5
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3.1. Finite spectral triples

A spectral triple (A, H, D) is said to be finite if A is a finite dimensional involutive C-algebra and H is a finite di-
mensional Hilbert space on which A is represented. The faithful representation π of A on H will be omitted when no 
confusion is possible. By the Wedderburn Theorem, the algebra is of the form A = ⊕r

i=1 Mni (C). In the following, we will 
write Ai = Mni = Mni (C) since no other matrix algebras will be considered. Let ιi : Ai → A be the canonical inclusion and 
πi :A →Ai be the canonical projection.

Consider the set  := {n1, . . . , nr} of irreducible representations (irreps) of A, where ni is a short notation that des-
ignates at the same time the integer ni defining the irrep (on the space Cni ) and the integer i (the same that appears 
in A = ⊕r

i=1 Mni ).  is completely defined by A and, reciprocally, A = ⊕r
i=1 Mni can be recovered from . Denote by 

Hni :=Cni the irreducible representations (irreps) of the Ai ’s, and so of A.
The Hilbert space H can be decomposed into orthogonal components Ĥni := ιi(Ai)H, so that H = ⊕r

i=1 Ĥni . Define 
ιi
H : Ĥni → H and πH

i : H → Ĥni the natural inclusions and (orthogonal) projections. Then there are integers μi , the 
multiplicities of the irreps, such that Ĥni � Hni ⊗ Cμi = Cni ⊗ Cμi . So, up to unitary equivalence, the Hilbert space H
can be decomposed as H � ⊕r

i=1 C
ni ⊗ Cμi and we now suppose that a unitary map has been chosen such that Ĥni =

Cni ⊗Cμi .4 If one requires a faithful representation of A, then μi ≥ 1 for all i.
In the even case, one has:

Lemma 3.2. γ decomposes along a family of linear maps �i : Cμi → Cμi such that γ (ξi ⊗ σi) = ξi ⊗ �i(σi) for any ξi ⊗ σi ∈
Cni ⊗Cμi . This family satisfies �†

i = �i and �2
i = 1.

Let us consider any orthonormal basis {σ p
i }1≤p≤μi of Cμi . Then, for any 1 ≤ i ≤ r, let �(0)

ni := {(i, p) | 1 ≤ p ≤ μi}, and for 
any v = (i, p) ∈ �

(0)
ni , define λ : �(0)

ni →  as λ(v) := ni . Notice that μi = #�
(0)
ni . For any v ∈ �

(0)
ni , we then define

Hv := Span{ξi ⊗ σ
p

i | ξi ∈Cni } � Hni

In the even case, we require the basis {σ p
i }1≤p≤μi to be eigenvectors of �i with eigenvalues sp

i = ±1. Then γ restricts to 
the multiplication by sp

i on Hv with v = (i, p). We define s(v) = sp
i for any v .

The map λ is extended in an obvious way on the set �(0) := ∪r
i=1�

(0)
ni and there is an orthogonal decomposition of H

into irreps H = ⊕v∈�(0) Hv . Let e = (v1, v2) ∈ �(0) × �(0) , then the Dirac operator decomposes along maps De :Hv1 →Hv2 . 
With ē := (v2, v1), D† = D is equivalent to Dē = D†

e . In the even case, γ D = −Dγ implies that s(v2)De = −s(v1)De , so that 
De is non-zero only when s(v2) = −s(v1).

The previous decomposition of the spectral triples (A, H, D) or (A, H, D, γ ) can be summarized using a decorated graph 
�, a so-called Krajewski Diagram, together with :

1. The set of vertex �(0) of the graph is equipped with a map λ : �(0) → . By a slight abuse of notation, the map λ will 
sometimes be used in the compact notation Cλ(v) =Cni . We will also use the map i(v) := i for λ(v) = ni .

2. For any vertex v ∈ �(0) , define Hv :=Hλ(v) =Cλ(v) . The element λ(v) ∈  is a decoration of the vertex v .

3. For any ni ∈ , define �(0)
ni := {v ∈ �(0) | λ(v) = ni} = λ−1(ni) and μi := #�

(0)
ni .

4. In the even case, a second decoration is the assignment of a grading map s(v) = ±1.
5. For every e = (v1, v2) ∈ �(0) × �(0) , let ē := (v2, v1).
6. The space �(1) ⊂ �(0) × �(0) of edges of the graph are couples e = (v1, v2) such that:

a. there is a non-zero linear map De :Hv1 →Hv2 such that Dē = D†
e :Hv2 →Hv1 .

b. s(v2) = −s(v1) in the even case;

Then De defines a decoration of e.

Given such a Krajewski Diagram, one can construct a spectral triple up to unitary equivalence.

3.2. Finite real spectral triples

Let us now consider (odd) finite (resp. even) real spectral triples (A, H, D, J ) (resp. (A, H, D, J , γ )). The Hilbert space 
H is then a bimodule over A = ⊕r

i=1 Mni , or equivalently a left Ae-module, with Ae = ⊕r
i, j=1 Mni ⊗ M◦

n j
. This implies that 

H decomposes into orthogonal components Ĥni n j := ιi(Ai)ι
j(A j)

◦H, so that H = ⊕r
i, j=1 Ĥni n j .

4 For sake of completeness, let us mention that the scalar product of this decomposition is the usual one: 〈ψ, ψ ′〉H =∑r
i=1〈ξi , ξ ′

i 〉Cni 〈σi , σ ′
i 〉Cμi for any 

ψ = ⊕r
i=1 ξi ⊗ σi (and the same for ψ ′) where ξi ∈Cni and σi ∈Cμi .
6
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Denote by Cm� (� for transpose) the m-dimensional C-vector space of row vectors, which is a natural right Mm-module, 
and denote by Cm◦ its corresponding left M◦

m-module.5 Let us recall the following result:

Lemma 3.3. For any integers n, m ≥ 1, the irreducible left Mn ⊗ M◦
m-representations are isomorphic to Cn ⊗Cm◦ .

Let μi j be the multiplicity of the irrep Hni n j := Cni ⊗ Cn j◦ of Mni ⊗ M◦
n j

and so of Ae , in H. Then one has Ĥni n j �
Hni n j ⊗Cμi j �Cni ⊗Cμi j ⊗Cn j◦ , so that H � ⊕r

i, j=1 C
ni ⊗Cμi j ⊗Cn j◦ . In the following, we suppose that a unitary map 

has been chosen such that Ĥni n j =Cni ⊗Cμi j ⊗Cn j◦ .6

Denote by J0 the anti-unitary operator on Cn ⊗ Cμ ⊗ Cm◦ defined by ξ ⊗ σ ⊗ η◦ �→ ξ̄ ⊗ σ ⊗ η̄◦ where ξ̄ is the 
entrywise complex conjugated vector (the same for σ and η̄◦). Then J0 extends naturally to H as an anti-unitary operator 
which preserves each summand Ĥni n j and one has J−1

0 = J0.7 We will use the natural notation J0(ψ) = ψ for any ψ ∈ H. 
Define K := J J0, i.e. J = K J0. For any a = ⊕r

i=1 ai ∈A, define a� = ⊕r
i=1 a�

i where a�
i = J0a∗

i J0 is the transpose of ai ∈ Mni . 
For any operator A on H, define A := J0 A J0 (if A is written as a matrix, A is the entrywise complex conjugate matrix, 
whence the notation). The following result gives an explicit description of J that will be used in Sect. 4:

Proposition 3.4. K is a unitary operator on H such that K K = K K = ε . For any 1 ≤ i, j ≤ r, K (Ĥni n j ) = Ĥn j ni , so that Ĥnin j and 
Ĥn j ni have the same dimension, i.e. they correspond to the same multiplicity μi j = μ ji .

There is a linear map Li j : Cμi j → Cμ ji satisfying L†
i j = L−1

i j and L ji Li j = L ji Li j = ε , such that, for any ξi ⊗ σi j ⊗ η◦
j ∈ Ĥni n j , 

K (ξi ⊗ σi j ⊗ η◦
j ) = η j ⊗ Li j(σi j) ⊗ ξ◦

i .

For any ξi ⊗ σi j ⊗ η◦
j ∈Hni n j , one has J (ξi ⊗ σi j ⊗ η◦

j ) = η̄ j ⊗ Li j(σ i j) ⊗ ξ̄◦
i .

In the even case, the following result gives an explicit description of γ :

Proposition 3.5. In the even case, there is a family of linear maps �i j :Cμi j →Cμi j such that γ (ξi ⊗ σi j ⊗ η◦
j ) = ξi ⊗ �i j(σi j) ⊗ η◦

j

for any ξi ⊗ σi j ⊗ η◦
j ∈ Ĥni n j . This family satisfies �†

i j = �i j and �2
i j = 1.

Let us now describe, in the following two propositions, the key constructions which lead to the classification of finite 
real spectral triples. The content of these two propositions will be useful in Sect. 4.3.

Proposition 3.6. Consider the odd case situation.
For 1 ≤ i �= j ≤ r, there is an orthonormal basis {σ p

i j }1≤p≤μi j of Cμi j such that σ p
ji = Li j(σ

p
i j) and σ p

i j = ε L ji(σ
p
ji) for any i < j

and any 1 ≤ p ≤ μ ji = μi j .
For i = j and ε = 1 (K O -dimensions 1 and 7), there is an orthonormal basis {σ p

ii }1≤p≤μii of Cμii such that σ p
ii = Lii(σ

p
ii).

For i = j and ε = −1 (K O -dimensions 3 and 5), μii is even and there is an orthonormal basis {σ p
ii }1≤p≤μii of Cμii such that 

σ 2a
ii = Lii(σ

2a−1
ii ) and σ 2a−1

ii = ε Lii(σ
2a
ii ) for any a = 1, . . . , μii/2.

Proposition 3.7. Consider the even case situation.
For 1 ≤ i �= j ≤ r, there is an orthonormal basis {σ p

i j }1≤p≤μi j of Cμi j of eigenvectors of �i j with eigenvalues sp
i j = ±1 such that 

σ
p
ji = Li j(σ

p
i j) and σ p

i j = ε L ji(σ
p
ji) for any i < j, and sp

ji = ε′′sp
i j .

For i = j, ε = 1, and ε′′ = 1 (K O -dimension 0), there is an orthonormal basis {σ p
ii }1≤p≤μii of Cμii of eigenvectors of �ii with 

eigenvalues sp
i = ±1 such that σ p

ii = Lii(σ
p
ii).

For i = j and ε = −1 (K O -dimensions 2 and 4), or ε = 1 and ε′′ = −1 (K O -dimension 6), μii is even and there is an orthonormal 
basis {σ p

ii }1≤p≤μii of Cμii of eigenvectors of �ii with eigenvalues sp
i = ±1 such that σ 2a

ii = Lii(σ
2a−1
ii ), σ 2a−1

ii = ε Lii(σ
2a
ii ), and 

s2a
i = ε′′s2a−1

i for any a = 1, . . . , μii/2. In K O -dimensions 2 and 6, one can choose the basis such that s2a
i = +1 and s2a−1

i = −1.

The proofs of Proposition 3.6 and 3.7 can be found with the present notations in [15]. They are adapted from [20]. 
Let us just mention some points that will be used later (see proof of Proposition 4.27 in Sect. 4.3). For 1 ≤ i < j ≤ r, the 
orthonormal basis {σ p

i j }1≤p≤μi j of Cμi j can be chosen with few constraints, and we construct from it the basis {σ p
ji :=

Li j(σ
p
i j)}1≤p≤μ ji of Cμ ji . In that construction, some free choices can be made for later purpose. For i = j, the proof relies 

5 Cm �Cm◦ as column vectors by the formal map Cm � ξ �→ ξ◦ ∈Cm◦ and, for any a ∈ Mm and ξ ∈Cm , a◦ξ◦ := (ξ�a)� .
6 The factor Cμi j has been positioned in the middle to put forward the bimodule structure. In the proof of Proposition 4.27 it will be convenient to 

change this convention.
7 Notice that J0 depends on the canonical basis for the vector spaces Cn , Cμ and Cm . But any fixed orthonormal basis could have been used.
7
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on an iterative construction of the basis {σ p
ii }1≤p≤μii of Cμii using properties of the map Lii (and �ii in the even case). Here 

again, some free choices are allowed at all steps.
We are now in position to use these results to decompose in a suitable way the Hilbert space H into irreps. We already 

know that H = ⊕r
i, j=1 Ĥni n j and that Ĥni n j = Cni ⊗Cμi j ⊗Cn j◦ . Using the orthonormal basis {σ p

i j }1≤p≤μi j of Cμi j given 
in Proposition 3.6 or Proposition 3.7, let us define

Hv := Span{ξi ⊗ σ
p

i j ⊗ η◦
j | ξi ∈Cni and η◦

j ∈Cn j◦} � Hni n j (3.1)

We have then the orthogonal decomposition of H along irreps: H = ⊕v∈�(0) Hv .

Consider first the odd case. For any 1 ≤ i, j ≤ r, define the set �(0)
ni n j := {(i, p, j) | 1 ≤ p ≤ μi j}, and for any v = (i, p, j) ∈

�
(0)
ni n j , define λ, ρ : �

(0)
ni n j →  as λ(v) := ni and ρ(v) := n j . Notice that μi j = #�

(0)
ni n j . Define κ : �

(0)
ni n j → �

(0)
n j ni as κ(v) :=

( j, p, i) for any v = (i, p, j). These maps induce an involution on �(0) := ∪r
i, j=1�

(0)
ni n j with the property λ ◦ κ = ρ (and so 

ρ ◦ κ = λ), where λ, ρ : �(0) →  are defined in an obvious way. This involution encodes some properties of the family of 
maps Li j , and so of the map J :Hv →Hκ(v) for any v ∈ �(0) .

In the even case, the basis in Proposition 3.7 are composed of eigenvectors of γ , and by construction, γ is the multi-
plication by ±1 on every Hv . We define a grading decoration of v as s(v) = ±1, which is the eigenvalue of the associated 
eigenvector. Notice then that s ◦ κ = ε′′s as can be checked in Proposition 3.7. The grading decoration s fully determines γ .

The Dirac operator decomposes along the orthogonal subspaces Hv as De : Hv1 → Hv2 where we define e := (v1, v2) ∈
�(0) × �(0) . With ē := (v2, v1), D† = D is equivalent to Dē = D†

e . Moreover, the first-order condition imposes some restric-
tions on the e = (v1, v2) such that De �= 0 (see below). Let κ(e) := (κ(v1), κ(v2)). Then the relation J D = ε′D J implies that 
De and Dκ(e) are related by J and ε′ (an explicit expression is given below). In particular, they are both zero or non-zero 
at the same time. In the even case, the relation γ D = −Dγ implies that De is non-zero only when s(v2) = −s(v1).

Let us abstract the construction using a decorated graph �, together with  and the K O -dimension d.

1. The set of vertex �(0) of the graph is equipped with two maps λ, ρ : �(0) →  × , that we write as a single map 
πλρ := λ × ρ , and define i(v) := i and j(v) := j for πλρ(v) = (ni, n j).

2. There is an involution κ : �(0) → �(0) such that λ ◦ κ = ρ and such that κ(v) = v when λ(v) = ρ(v) in K O -dimensions 
0, 1, and 7.

3. For any vertex v ∈ �(0) with πλρ(v) = (ni, n j), define Hv := Hλ(v)ρ(v) = Cλ(v) ⊗ Cρ(v)◦ = Cni ⊗ Cn j◦ . The element 
(ni, n j) ∈  ×  is a decoration of the vertex v .

4. Define �(0)
ni n j := {v ∈ �(0) | πλρ(v) = (ni, n j)} = π−1

λρ (ni, n j) and μi j := #�
(0)
ni n j .

5. Define κ̂v :Hv →Hκ(v) as κ̂v (ξ (v) ⊗η(v)◦) = η(v) ⊗ ξ (v)◦ for any ξ (v) ∈Cλ(v) and η(v)◦ ∈Cρ(v)◦ . Notice that κ̂κ(v) ◦ κ̂v =
IdHv .

6. If the K O -dimension is even, a second decoration of each vertex is the assignment of a grading map s(v) = ±1 such 
that s ◦ κ = ε′′s.

7. If the K O -dimension is 2, 3, 4, 5, or 6, then μii is even and another decoration of each vertex v ∈ �
(0)
ni ni is the parity 

χ(v) = 0, 1 such that χ(κ(v)) = 1 − χ(v), so that half of the vertices in �(0)
ni ni are decorated by the value 0 (resp. 1).

8. For any v ∈ �(0) , define

ε(v,d) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for i(v) < j(v),

ε for i(v) > j(v),

1 for i(v) = j(v) and d = 0,1,7,

εχ(v) for i(v) = j(v) and d = 2,3,4,5,6.

(3.2)

One can check that ε(v, d)ε(κ(v), d) = ε for any v ∈ �(0) .
9. For every e = (v1, v2) ∈ �(0) × �(0) , let ē := (v2, v1) and κ(e) := (κ(v1), κ(v2)).

10. The space �(1) ⊂ �(0) × �(0) of edges of the graph are couples e = (v1, v2) such that:

a. λ(v1) = λ(v2) or ρ(v1) = ρ(v2) (or both);
b. s(v2) = −s(v1) in the even case;
c. there is a non-zero linear map De :Hv1 →Hv2 such that:

i. Dē = D†
e :Hv2 →Hv1 ;

ii. Dκ(e) = ε′ε(v1, d)ε(v2, d) ̂κv2 J0 De J0κ̂κ(v1) :Hκ(v1) →Hκ(v2);
iii. For λ(v1) = λ(v2) and ρ(v1) �= ρ(v2), De = 1ni1

⊗ D R,e with D R,e :Cn j1 ◦ →Cn j2 ◦;
iv. For λ(v1) �= λ(v2) and ρ(v1) = ρ(v2), De = D L,e ⊗ 1n j1

with D L,e :Cni1 →Cni2 .

Then De defines a decoration of e.
8
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Fig. 1. A Krajewski diagram for the algebra Mn1 ⊕ Mn2 ⊕ Mn3 in the 3-dimensional representation explained in the text. The component De1 (resp. De2 ) of 
the Dirac operator joins two irreps with same λ (resp. same ρ); De3 and De4 join irreps with the same λ and ρ , but De4 can be non zero only in the odd 
case. The maps κ̂ realize the axial symmetry defined by the dotted line in the  lattice.

For any ξi ⊗ η◦
j ∈ Hv1 , it is convenient to write De(ξi1 ⊗ η◦

j1
) = D(1)

L,eξi1 ⊗ D(2)
R,eη

◦
j1

as a sumless Sweedler-like notation8

where there is an implicit summation over finite families of operators D(1)
L,e :Cni1 →Cni2 and D(2)

R,e :Cn j1 ◦ →Cn j2 ◦ . In the 
previous points 10.c.iii and 10.c.iv, this decomposition is explicitly given (summation reduced to a single term).

One can see �(0) as a set of points on top of the points  × , where the (down) projection is πλρ . Each point in 
�

(0)
ni n j = π−1

λρ (ni, n j) is a copy of the irrep Hni n j : we can look at v as an element of the “fiber” �(0)
ni n j on top of (ni, n j). 

The edges in �(1) , once projected in  × , connect points horizontally, vertically or self-connect a (projected) point. A 
convenient representation of � is then a 3-dimensional set of points decorated by some values (as seen above) and linked 
by decorated lines, see Fig. 1.

These data completely determine a real (odd or even) spectral triple. A vertex v ∈ �(0) defines the irrep Hv with mul-
tiplicity μ(v) := #�

(0)
πλρ(v) , so the Hilbert space is H := ⊕v∈�(0) Hv = ⊕r

i, j=1 Ĥni n j with Ĥni n j = Cni ⊗ Cμi j ⊗ Cn j◦ . Any 
operator A on H decomposes into linear maps Av1

v2 :Hv1 →Hv2 .
It will be useful to describe the representation π along these two decompositions. For any a = ⊕r

i=1 ai ∈ A, any v =
(i, p, j), and any ψ = ⊕v∈�(0) ψv = ⊕r

i, j=1 ξi ⊗σ
p

i j ⊗η◦
j with ψv ∈Hv =Cλ(v) ⊗Cρ(v)◦ and ξi ⊗σ

p
i j ⊗η◦

j ∈Cni ⊗Cμi j ⊗Cn j◦ , 
one has π(a)ψ = ⊕v∈�(0) ai(v)ψv = ⊕r

i, j=1(aiξi) ⊗ σ
p

i j ⊗ η◦
j where ai(v)ψv is the multiplication of the matrix ai(v) on the left 

factor of Cλ(v) ⊗ Cρ(v)◦ and aiξi is the usual matrix multiplication on Cni . In other words, the decomposition of the 
operator π(a) along the Hv ’s is

π(a)v1
v2

= ai(v1)δ
v1
v2

: Hv1 → Hv2 (3.3)

(where δv1
v2 is the Kronecker symbol). In the real case, for any a = ⊕r

i=1 ai ∈ A, any b = ⊕r
j=1 b j ∈ A, and any ψv ∈ Hv , one 

has ab◦ψv = ai(v)b◦
j(v)ψv ∈Hv (π omitted) where b◦

j(v) acts on the right factor of Cλ(v) ⊗Cρ(v)◦ (see footnote 5). A similar 
relation holds on Cni ⊗Cμi j ⊗Cn j◦ .

In the even case, γ is determined as the multiplication by the decoration s(v) = ±1 on Hv . The real operator J is 
reconstructed by the family of maps

J v := ε(v,d) J0κ̂v = ε(v,d) κ̂v J0 : Hv → Hκ(v)

or, equivalently, with i = i(v) and j = j(v), and any ξi ⊗ η◦
j ∈ Hv , J (ξi ⊗ η◦

j ) = ε(v, d) η̄ j ⊗ ξ̄◦
i ∈ Hκ(v) . In other words, 

J v1
v2 = ε(v1, d)δ

v1
κ(v1) J0κ̂v1 .

The Dirac operator is reconstructed by the decorations De of the edges e ∈ �(1) . Introduce an orthonormal basis for each 
Cμi j and label all these basis vectors in the union of all the Cμi j ’s as {σv}v∈�(0) : for any v ∈ �

(0)
ni n j , σv is an element of an 

orthonormal basis of Cμi j . We use the identification Hv = Span{ξ ⊗σv ⊗η◦ | ξ ∈Cλ(v), η◦ ∈Cμ(v)◦}. For any e = (v1, v2) ∈
�(1) with v1 ∈ �

(0)
ni1 n j1

and v2 ∈ �
(0)
ni2 n j2

, define D̂e : Ĥni1 n j1
→ Ĥni2 n j2

, for any ξ ∈Cni1 and η◦ ∈Cn j1 ◦ , as

8 This notation is usual for computations on coalgebras.
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D̂e(ξ ⊗ σv ⊗ η◦) =
{

0 if v �= v1

(D(1)
L,eξ) ⊗ σv2 ⊗ (D(2)

R,eη
◦) if v = v1.

Then D is completely given as a matrix with entries D̂e in the decomposition H = ⊕r
i, j=1 Ĥni n j .

One can write a specific version of (2.2) for the decomposition H = ⊕v∈�(0) Hv in terms of the operators De for e ∈ �(1) . 
For any ω ∈ �n

U (A) ⊂ TnA which decomposes along a sum of typical terms ⊕r
i1,...,in−1=1

(
a0

i ⊗ a1
i1

⊗ · · · ⊗ an−1
in−1

⊗ an
j

)r
i, j=1 ∈

TnA and any v0, vn ∈ �(0) , one has

πD(ω)vn
v0

=
∑

all terms at the
(i(v0), i(vn)) entry in ω

∑
v1,...,vn−1∈�(0) a0

i(v0)D(v1,v0)a
1
i(v1)D(v2,v1) · · ·an−1

i(vn−1)D(vn,vn−1)a
n
i(vn) : Hvn → Hv0

(3.4)

In this formula, one supposes D(vi+1,vi) = 0 when (vi+1, vi) /∈ �(1) .

4. Lifting one step of the defining inductive sequence

In this section, we study the “lifting” to spectral triples of a one-to-one homomorphism φ : A → B. As explained in 
Sect. 1, the main idea, which is central in our paper, is to define a notion of φ-compatibility for the structures defining 
spectral triples (A, HA, DA, JA, γA) and (B, HB, DB, JB, γB) on top of A and B. This construction, applied in Sect. 4.3
to A F -algebras, can be interpreted as a lift of arrows in a Bratteli diagram to arrows between Krajewski diagrams.

4.1. General situations

The first structure to consider are the Hilbert spaces HA and HB , that we can consider as left modules on A and B
via their corresponding representations that are not explicitly written in the following. Similarly to [14, Definition 15], we 
introduce the following definition:

Definition 4.1. A morphism (bounded linear map) of Hilbert spaces φH : HA → HB is φ-compatible if φH(aψ) =
φ(a)φH(ψ) for any a ∈A and ψ ∈HA (the representations πA and πB are omitted in this relation).

In this definition, we suppose that φH is only a bounded linear map: we look at the category of Hilbert spaces as a 
dagger category. But in order to get some useful results, we will assume later that φH is an isometry (see Sect. 5.1).

Given the morphism φH : HA → HB , one can decompose HB as HB = φH(HA) ⊕ φH(HA)⊥ in a unique φH-
dependent way, where φH(HA) = Ran(φH) is the range of φH . This implies that any operator B on HB can be decomposed 

as B =
(

Bφ
φ B⊥

φ

Bφ
⊥ B⊥⊥

)
with obvious notations, for instance B⊥

φ : φH(HA)⊥ → φH(HA). In this orthogonal decomposition, one 

has B† =
(

Bφ†
φ Bφ†

⊥
B⊥†

φ B⊥†
⊥

)
.

Definition 4.2 (φ-compatibility of operators). Given two operators A on HA and B on HB , we say that they are φ-compatible 
if φH(Aψ) = Bφ

φφH(ψ) for any ψ ∈HA (equality in φH(HA)).

This definition makes sense since both sides belong to φH(HA). Notice that, by an abuse of notation, we use the 
terminology “φ-compatibility” but this notion depends on the couple of maps (φ, φH).

One can define a stronger φ-compatibility between A and B:

Definition 4.3 (Strong φ-compatibility of operators). Given two operators A on HA and B on HB , we say that they are strong 
φ-compatible if φH(Aψ) = BφH(ψ) for any ψ ∈HA (equality in HB).

Remark 4.4. Notice that these two φ-compatibility conditions imply that Ker φH ⊂ KerφH ◦ A, since, if ψ ∈ KerφH , then 
0 = Bφ

φφH(ψ) = φH(Aψ) in the first case, and similarly in the second case. A sufficient condition for this to hold for every 
A is to require φH to be one-to-one. �

Remark 4.5. Definition 4.1 implies that πA(a) and πB(φ(a)) are strong φ-compatible for any a ∈A. �

The following Proposition gives other consequences of the two definitions, where diagonality refers to the previously 
defined 2 × 2 matrix decomposition.
10
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Proposition 4.6.

1. φ-compatibility and strong φ-compatibility are stable under sums of operators.
2. Compositions of strong φ-compatible operators are strong φ-compatible (this is not necessarily true for φ-compatible operators).
3. If A on HA and B on HB are strong φ-compatible then Bφ

⊥ = 0.
4. Strong φ-compatibility implies φ-compatibility.
5. If Bφ

⊥ = 0, the φ-compatibility implies the strong φ-compatibility.
6. When B is self-adjoint, strong φ-compatibility implies that B is diagonal.
7. If A on HA and B on HB are strong φ-compatible and A and B are unitaries, then A† and B† are strong φ-compatible and B is 

diagonal.

8. For any a ∈A, the operator πB ◦ φ(a) on HB reduces to a diagonal matrix πB ◦ φ(a) =
(

πB◦φ(a)
φ
φ 0

0 πB◦φ(a)⊥⊥

)
.

Proof. Point 1 is obvious by linearity of the compatibility conditions and the matrix decompositions. For point 2, let A1, A2
be two operators on HA and B1, B2 two operators on HB which are strong φ-compatible with A1 and A2 respectively. 
Then for any ψ ∈ HA , one has φH(A1 A2ψ) = B1φH(A2ψ) = B1 B2φH(ψ) so that A1 A2 is strong φ-compatible with B1 B2. 
For φ-compatibility, this line of reasoning is not possible in general.

One can identify φH(ψ) with 
(

φH(ψ)

0

)
∈ φH(HA) ⊕φH(HA)⊥ =HB (resp. φH(Aψ) with 

(
φH(Aψ)

0

)
), so that Bφ

φφH(ψ)

identifies with 
(

Bφ
φφH(ψ)

0

)
while BφH(ψ) identifies with 

(
Bφ

φφH(ψ)

Bφ
⊥φH(ψ)

)
. The φ-compatibility condition implies that the map 

Bφ
φ : φH(HA) → φH(HA) is completely determined by A and φH , while the strong φ-compatibility condition implies firstly 

that φH(Aψ) = Bφ
φφH(ψ), and secondly that Bφ

⊥ : φH(HA) → φH(HA)⊥ is the zero map, which is point 3. So, using 
these results, one gets that the strong φ-compatibility implies the φ-compatibility condition (which only constrains the Bφ

φ

component of B), which is point 4. For point 5, from Bφ
⊥ = 0 and φH(Aψ) = Bφ

φφH(ψ), one gets BφH(ψ) =
(

Bφ
φφH(ψ)

Bφ
⊥φH(ψ)

)
=(

Bφ
φφH(ψ)

0

)
=
(

φH(Aψ)

0

)
= φH(Aψ), which is the strong φ-compatibility condition.

Point 6: if B is self-adjoint, the condition B = B† implies B⊥†
φ = Bφ

⊥ = 0, so that B is diagonal.

Point 7: if A and B are unitaries, then φH(ψ) = φH(A† Aψ) on the one hand and φH(ψ) = B† BφH(ψ) on the other 
hand, so that φH(A† Aψ) = B† BφH(ψ) = B†φH(Aψ). Since A is invertible, any ψ ′ ∈HA can be written as ψ ′ = Aψ , so that 
φH(A†ψ) = B†φH(ψ) for any ψ , which proves that A† and B† are strong φ-compatible. The strong φ-compatibilities implies 
Bφ

⊥ = 0 and (B†)
φ
⊥ = B⊥†

φ = 0, and so B is diagonal.

Point 8: let us use the notation πB ◦ φ(a) =
(

πB◦φ(a)
φ
φ πB◦φ(a)⊥φ

πB◦φ(a)
φ
⊥ πB◦φ(a)⊥⊥

)
for any a ∈A. From Definition 4.1, πB ◦ φ(a) is strong 

φ-compatible with πA(a), so that πB ◦ φ(a)
φ
⊥ = 0. Since πB ◦ φ(a∗) = πB ◦ φ(a)†, this implies that πB ◦ φ(a∗)⊥φ = 0 for any 

a, so that πB ◦ φ(a) reduces to a diagonal matrix. �

One can associate to B =
(

Bφ
φ B⊥

φ

Bφ
⊥ B⊥⊥

)
the operator B̂φ

φ =
(

Bφ
φ 0

0 0

)
. Then the φ-compatibility between A and B is equivalent 

to the strong φ-compatibility between A and B̂φ
φ .

Definition 4.7 (φ-compatibility of spectral triples). Assume given a φ-compatible map φH :HA →HB .
Two odd spectral triples (A, HA, DA) and (B, HB, DB) are said to be φ-compatible if DA is φ-compatible with DB .
Two real spectral triples (A, HA, DA, JA) and (B, HB, DB, JB) are said to be φ-compatible if DA (resp. JA) is φ-

compatible with DB (resp. JB).
In the even case for A, one requires that B is also even and that the grading operators γA and γB are φ-compatible.

Strong φ-compatibility of spectral triples can be defined in an obvious way.

Remark 4.8. Notice that strong φ-compatibility of spectral triples is similar to the condition (3) given in [7, Def 2.1] where 
their couple (φ, I) corresponds to our couple (φ, φH). We depart from this paper where inductive sequences of spectral 
triples are studied in the following way: we will restrict our analysis to the algebraic part of spectral triples since only 
A F -algebras will be considered later, so that the analytic part is quite trivial in our situation, and we will focus on gauge 
fields theories defined on top of spectral triples. For instance, conditions like (ST1) (about the ∗-subalgebra A∞) and (ST2) 
(about the compactness of the resolvent of the Dirac operator) in [7] will not be considered here. Other papers use also this 
notion of strong φ-compatibility, see for instance [3] and [10]. But, since we are interested in accumulating “new degrees 
11
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of freedom” along the inductive limit, the φ-compatibility condition will be more relevant than the strong φ-compatibility 
condition in that respect. �

Since JA and JB define Ae =A ⊗A◦ and Be = B⊗B◦ modules structures on HA and HB , it is convenient to express φ-
compatibility in terms of this structure. The homomorphism φ defines a canonical homomorphism of algebras φ◦ :A◦ → B◦
by the relation φ◦(a◦) := φ(a)◦ . We then define φe :Ae → Be as φe := φ ⊗φ◦ , i.e. φe(a1 ⊗a◦

2) = φ(a1) ⊗φ◦(a◦
2). Let M (resp. 

N ) be a A-bimodule (resp. B-bimodule), which is also a Ae -left module (resp. Be-left module) by (a1 ⊗ a◦
2)e := a1ea2

for any e ∈ M and a1, a2 ∈ A (and similar relations for B and N ). Then, we say that a linear map between the two 
bimodules φMod : M → N is φ-compatible if it is φe-compatible between the two left modules, that is φMod((a1 ⊗ a◦

2)e) =
φe(a1 ⊗ a◦

2)φMod(e), which is equivalent to φMod(a1ea2) = φ(a1)φMod(e)φ(a2).

Lemma 4.9. Suppose that φH : HA → HB is φ-compatible as a map of left modules and that JA and JB are strong φ-compatible. 
Then φH is φe-compatible as a map between the bimodules defined by the real operators.

Proof. For any ψ ∈ HA , a1, a2 ∈ A, by definition, one has a1ψa2 = (a1 ⊗ a◦
2)ψ = a1 JAa∗

2 JAψ . On the one hand, since φH
is φ-compatible, one has φH(a1ψ) = φ(a1)φH(ψ). On the other hand, φH(ψa2) = φH( JAa∗

2 JAψ) = JBφ(a2)
∗ JBφH(ψ) =

φH(ψ)φ(a2). �

Lemma 4.10. Suppose that JB is strong φ-compatible with JA:

1. εA = εB .
2. J−1

B is strong φ-compatible with J−1
A

3. JB is diagonal in its matrix decomposition.
4. If two operators A on HA and B on HB are φ-compatible, then the operators JAA J−1

A and JBB J−1
B are φ-compatible.

Proof. From J 2
A = εA and J 2

B = εB , one gets εAφH(ψ) = φH( J 2
Aψ) = J 2

BφH(ψ) = εBφH(ψ) for any ψ ∈ HA , so that 
εB = εA . From this we deduce that J−1

B = εB JB is strong φ-compatible with J−1
A = εA JA .

Let JB =
(

JφB,φ J⊥B,φ

JφB,⊥ J⊥B,⊥

)
. Since JB is strong φ-compatible with JA , we already know that Jφ

B,⊥ = 0. Let ψB ∈

φH(HB) and ψ ′
B ∈ φH(HA)⊥ . Then JB(ψB) =

(
JφB,φ (ψB)

0

)
and JB(ψ ′

B) =
(

J⊥B,φ (ψ ′
B)

J⊥B,⊥(ψ ′
B)

)
, so that 0 = 〈ψ ′

B, ψB〉HB =
〈 JB(ψB), JB(ψ ′

B)〉HB = 〈 Jφ

B,φ
(ψB), J⊥

B,φ
(ψ ′

B)〉HB . From J−1
B = εB JB and Jφ

B,⊥ = 0, one gets that Jφ

B,φ
is invertible with 

( Jφ

B,φ
)−1 = ( J−1

B )
φ
φ = εB Jφ

B,φ
, so that Jφ

B,φ
(φH(HA)) = φH(HA), which implies that J⊥

B,φ
(ψ ′

B) ∈ φH(HA)⊥ , that is, 
J⊥
B,φ

(ψ ′
B) = 0 for any ψ ′

B ∈ φH(HA)⊥ , and so J⊥
B,φ

= 0.

From ( JBB J−1
B )

φ
φ = Jφ

B,φ
Bφ

φ( Jφ

B,φ
)−1, we deduce that the operators JAA J−1

A and JBB J−1
B are φ-compatible. �

Lemma 4.11. Let us consider the even case and suppose γB is φ-compatible with γA .

1. Then γB is diagonal in its matrix decomposition, so that strong φ-compatibility and φ-compatibility between γB and γA are 
equivalent.

2. Then φH is diagonal for the matrix decomposition induced by HA = H+
A ⊕ H−

A and HB = H+
B ⊕ H−

B , so that φH restricts to 
maps H±

A →H±
B .

Proof. Point 1: since γ
†
B = γB , one has γB =

(
γ

φ
B,φ γ ⊥

B,φ

γ
⊥†
B,φ γ ⊥

B,⊥

)
. The φ-compatibility implies (γ

φ

B,φ
)2φH(ψ) = φH(γ 2

Aψ) =
φH(ψ), so that (γ φ

B,φ
)2 = 1. Since γ 2

B = 1, one has (γ φ

B,φ
)2 + γ ⊥

B,φ
γ

⊥†
B,φ

= 1, from which we get γ ⊥
B,φ

γ
⊥†
B,φ

= 0, which implies 
γ ⊥
B,φ

= 0, so that γB is diagonal. By Proposition 4.6, this implies strong φ-compatibility.

Point 2: for every ψ ∈H±
A , one has ±φH(ψ) = φH(γAψ) = γBφH(ψ), so that φH(ψ) ∈H±

B . �

Proposition 4.12.

1. If two (odd/even) real spectral triples are φ-compatible and JB is strong φ-compatible with JA , then they have the same K O -
dimension (mod 8).

2. If two (odd/even) real spectral triples are strong φ-compatible, then they have the same K O -dimension (mod 8).

Proof. Let (A, HA, DA, JA) and (B, HB, DB, JB) be two φ-compatible real spectral triples such that JB is strong φ-
compatible with JA . In the even case, consider the gradings γA and γB . We already know from Lemma 4.10 that εA = εB . 
12
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Using the fact that JB and γB are diagonal (Lemmas 4.10 and 4.11), one has ( JBDB)
φ
φ = Jφ

B,φ
Dφ

B,φ
, (DB JB)

φ
φ = Dφ

B,φ
Jφ

B,φ
, 

( JBγB)
φ
φ = Jφ

B,φ
γ

φ

B,φ
, and (γB JB)

φ
φ = γ

φ

B,φ
Jφ

B,φ
, which implies, by φ-compatibility, that ε′

B = ε′
A and ε′′

B = ε′′
A .

The second assertion follows from the first one. �

The requirement that JB be strong φ-compatible with JA seems to be inevitable in the generic situation to get the 
same K O -dimension. In the case of A F -algebras, this requirement will be a consequence of another requirement on the φH
map, see Proposition 4.23.

Let (A, HA, DA, JA) and (A′, HA′ , DA′ , JA′) be two unitary equivalent real spectral triples for UA : HA → H′
A and 

φA :A →A′ and let (B, HB, DB, JB) and (B′, HB′ , DB′ , JB′) be two unitary equivalent real spectral triples for UB :HB →
HB′ and φB : B → B′ .

Proposition 4.13. Suppose that (A, HA, DA, JA) and (B, HB, DB, JB) are strong φ-compatible (resp. φ-compatible), and that 
there is a homomorphism of algebras φ′ :A′ → B′ and a morphism φ′

H :HA′ →HB′ such that φ′ ◦ φA = φB ◦ φ and φ′
H(UAψ) =

UBφH(ψ) for any ψ ∈ HA (resp. and suppose that UB is diagonal). Then (A′, HA′ , DA′ , JA′) and (B′, HB′ , DB′ , JB′) are strong 
φ′-compatible (resp. φ-compatible). If the spectral triples are even, the result holds also.

This result shows that strong φ-compatibility (resp. φ-compatibility) is transported by unitary equivalence if one assumes 
some natural conditions on the maps φ′ and φ′

H , which are the commutativity of the following diagrams:

A B

A′ B′

φ

φA φB

φ′
and

HA HB

HA′ HB′

φH

UA UB
φH ′

(resp. and one requires UB to be diagonal).

Proof. For any ψ ′ ∈ HA′ , let ψ ∈ HA be the unique vector such that ψ ′ = UAψ , and for any a′ ∈ A′ , let a ∈ A
the unique element such that a′ = φA(a). Then one has φ′

H(πA′ (a′)ψ ′) = φ′
H((πA′ ◦ φA(a))UAψ) = φ′

H(UAπA(a)ψ) =
UBφH(πA(a)ψ) = UB(πB ◦ φ(a))φH(UA−1ψ ′) = UB(πB ◦ φ(a))UB−1φ′

H(ψ ′) = (πB′ ◦ φB ◦ φ(a))φ′
H(ψ ′) = (πB′ ◦ φ′(a′))

φ′
H(ψ ′), so that φ′

H is φ′-compatible. Let A and B be strong φ-compatible or φ-compatible operators on HA and 
HB and define A′ := UAAUA−1 and B ′ := UBBUB−1 on HA′ and HB′ . In the strong φ-compatibility case, one has 
φ′
H(A′ψ ′) = φ′

H(UAAψ) = UBφH(Aψ) = UBBφH(ψ) = B ′UBφH(ψ) = B ′φ′
H(UAψ) = B ′φ′

H(ψ ′), so that A′ and B ′ are 
strong φ′-compatible. Applying this result to DA′ and DB′ (resp. JA′ and JB′ , resp. γA′ and γB′ in the even case) 
shows that (A′, HA′ , DA′ , JA′) and (B′, HB′ , DB′ , JB′) are strong φ′-compatible and similarly in the even case. In the 
φ-compatibility case, since UB is diagonal, one has B ′φ

φ = UB
φ
φ Bφ

φ(UB
φ
φ)−1, and the conclusion follows in the same way. �

In the proof, the commutativity of the first diagram is only used when the representation πB′ is applied, and more 
specifically, when this representation acts on φ′

H(HA′ ). In other words, the minimal condition in this proof is that πB′ ◦
φ′ ◦ φA = πB′ ◦ φB ◦ φ holds as operators acting on φ′

H(HA′ ) ⊂HB′ .
The map φ induces a natural map of graded algebras φ : T •A → T •B by the relation φ(a0 ⊗ · · · ⊗ an) = φ(a0) ⊗

· · · ⊗ φ(an). If ω ∈ �1
U (A), then one can check that φ(ω) ∈ �1

U (B), so that φ restricts to a map of graded algebras 
�•

U (A) → �•
U (B). If φ(1A) = 1B , then φ(dU a) = φ(1A ⊗ a − a ⊗ 1A) = 1B ⊗ φ(a) − φ(a) ⊗ 1B = dU φ(b). If φ(1A) �= 1B , 

let pφ := φ(1A) ∈ B be the induced projection. Then φ(dU a) = pφ ⊗ φ(a) − φ(a) ⊗ pφ ∈ �1
U (B) can be written as 

φ(dU a) = pφdU φ(a) +φ(a)dU (1B − pφ) = pφdU φ(a) −φ(a)dU pφ . This shows that φ is a homomorphism of differential alge-
bras only when it is unital. In the following, we will use the most general relation φ(a0dU a1) = φ(a0)dU φ(a1) −φ(a0a1)dU pφ

since φ(a)pφ = φ(a).

Proposition 4.14. Suppose that DB is φ-compatible with DA .

1. For any ω ∈ �1
U (A), πDB ◦ φ(ω) is φ-compatible with πDA(ω).

2. Suppose that JB is strong φ-compatible with JA . For any unitaries uA ∈ A and uB ∈ B such that πA(uA) and πB(uB) are 
φ-compatible and πB(uB) is diagonal in the matrix decomposition, DuB

B is φ-compatible with DuA
A .

3. Using the hypothesis of the previous points, DuB
B,φ(ω)

is φ-compatible with DuA
A,ω .

Condition 2 in this Proposition implies in particular that πB′ ◦φ′ ◦φA = πB′ ◦φB ◦φ (see comment after Proposition 4.13) 
with A′ =A, B′ = B and φ′ = φ.
13
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Proof. We can reduce the general case to ω = a0dU a1 ∈ �1
U (A). Let us then consider πDB ◦φ(a0dU a1) = φ(a0)[DB, φ(a1)] −

φ(a0a1)[DB, pφ] (with πB omitted in this relation and the following). For any ψ ∈ HA , one has φ(a0a1)[DB, pφ]φH(ψ) =
φ(a0a1)DBφH(ψ) − φ(a0a1)φ(1A)DBφH(ψ) = 0, since pφφH(ψ) = φH(ψ), so that πDB ◦ φ(a0dU a1)φH(ψ) = φ(a0)[DB,

φ(a1)]φH(ψ). Using the matrix decomposition DB =
(

Dφ
B,φ D⊥

B,φ

Dφ
B,⊥ D⊥

B,⊥

)
and Point 8 in Proposition 4.6, one gets

φ(a0)[DB, φ(a1)]
(

φH(ψ)

0

)
=
(

φ(a0)
φ
φ[Dφ

B,φ, φ(a1)
φ
φ]φH(ψ)

φ(a0)⊥⊥(Dφ
B,⊥φ(a1)

φ
φ − φ(a1)⊥⊥Dφ

B,⊥)φH(ψ)

)

From this relation we get πDB (φ(a0dU a1))
φ
φ = φ(a0)

φ
φ[Dφ

B,φ
, φ(a1)

φ
φ] and then πDB (φ(a0dU a1))

φ
φφH(ψ) = φ(a0)

φ
φ[Dφ

B,φ
,

φ(a1)
φ
φ]φH(ψ) = φH(a0[DA, a1]ψ) = φH(πDA(a0dU a1)ψ) since DB is φ-compatible with DA .

Using the hypothesis that πB(uB) is diagonal, a straightforward computation gives (πB(uB)†[DB, πB(uB)])φφ =
(πB(uB)†)

φ
φ[Dφ

B,φ
, πB(uB)

φ
φ] from which we deduce that πB(uB)†[DB, πB(uB)] is φ-compatible with πA(uA)†[DA,

πA(uA)]. From Lemma 4.10, we deduce that JBπB(uB)†[DB, πB(uB)] J−1
B is φ-compatible with JAπA(uA)†[DA,

πA(uA)] J−1
A , and so that DuB

B = DB + πB(uB)†[DB, πB(uB)] + ε′
B JBπB(uB)†[DB, πB(uB)] J−1

B is φ-compatible with 
DuA
A = DA + πA(uA)†[DA, πA(uA)] + ε′

A JAπA(uA)†[DA, πA(uA)] J−1
A since ε′

B = ε′
A by Proposition 4.12.

The last point combines the two previous results by replacing DA by DA,ω = DA + πDA(ω) + ε′
A JAπDA (ω) J−1

A and 
DB by DB,φ(ω) = DB + πDB (φ(ω)) + ε′

B JBπDB (φ(ω)) J−1
B which are φ-compatible by the first point, Lemma 4.10, and 

Proposition 4.12. �

Notice that one can associate to any unitary uA ∈ A the diagonal (unitary) operator 
(

πB◦φ(uA) 0

0 1⊥⊥

)
where πB ◦

φ(uA)φH(ψ) := φH(πA(uA)ψ) for any ψ ∈ HA and 1⊥⊥ is the identity operator on φH(HA)⊥ . But this operator is not 
necessarily of the form πB(uB) for a unitary uB ∈ B. In the case of A F -algebras, it will be possible to construct a unitary 
uB ∈ B from uA such that πA(uA) and πB(uB) are (strong) φ-compatible and πB(uB) is diagonal, see Proposition 4.22.

A strong version of the previous proposition can be proposed, for which a proof is not necessary since it combines 
previous results and the same line of reasoning when computations are needed:

Proposition 4.15. Suppose that DB is strong φ-compatible with DA.

1. For any ω ∈ �1
U (A), πDB ◦ φ(ω) is strong φ-compatible with πDA(ω).

2. Suppose that JB is strong φ-compatible with JA. For any unitaries uA ∈A and uB ∈ B such that πA(uA) and πB(uB) are strong 
φ-compatible, DuB

B is strong φ-compatible with DuA
A .

3. Using the hypothesis of the previous points, DuB
B,φ(ω) is strong φ-compatible with DuA

A,ω .

4.2. Direct sums of algebras

Let us consider the more specific situation A = ⊕r
i=1 Ai and B = ⊕s

k=1 Bk . We also suppose that there are (orthogonal) 
decompositions HA = ⊕r

i=1 HA,i and HB = ⊕s
k=1 HB,k such that the HA,i (resp. HB,k) are Hilbert spaces on which Ai

(resp. Bk) are represented. In other words, the (left) module structures are compatibles with the direct sums of algebras 
and Hilbert spaces: for any a = ⊕r

i=1 ai ∈A and ψ = ⊕r
i=1 ψi ∈HA , one has aψ = ⊕r

i=1 aiψi (and similarly for B).
Let ιi

A :Ai →A be the canonical inclusion and πA
i :A →Ai be the canonical projection. With obvious notations, similar 

maps are defined for B, HA , and HB .
An operator A on HA can be decomposed along the operators Ai

j := πHA
j ◦ A ◦ ιi

HA
:HA,i →HA, j . The same holds for 

operators on HB . For computational purposes, we recall that one has

Aψ = ⊕r
j=1

(∑r
i=1 Ai

j(ψi)
)=∑r

i, j=1 ι
j
HA ◦ Ai

j(ψi).

In the same way, a one-to-one homomorphism of algebras φ :A → B decomposes along the maps φi
k := πB

k ◦ φ ◦ ιi
A :Ai →

Bk and a morphism of Hilbert spaces φH : HA →HB decomposes along the φi
H,k := πHB

k ◦ φH ◦ ιi
HA

:HA,i → HB,k . One 
has

φ(a) = ⊕s
k=1

(∑r
i=1 φi

k(ai)
)
, and φH(ψ) = ⊕s

k=1

(∑r
i=1 φi

H,k(ψi)
)
.

Notice also that φ(aa′) = φ(a)φ(a′) implies∑r
φi (aia

′) =∑r
φi (ai)φ

j
(a′ ) for any k = 1, . . . , s (4.1)
i=1 k i i, j=1 k k j

14
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Lemma 4.16. The φ-compatibility of φH is equivalent to φi
H,k(aiψi) = φi

k(ai)φ
i
H,k(ψi) for any 1 ≤ i ≤ r, 1 ≤ k ≤ s, ai ∈ Ai and 

ψi ∈HA,i .

Proof. One has φH(aψ) = ⊕s
k=1

(∑r
i=1 φi

k(aiψi)
)

and φ(a)φH(ψ) = ⊕s
k=1

(∑r
i=1 φi

k(ai)φ
i
H,k(ψi)

)
so that φH(aψ) =

φ(a)φH(ψ) is equivalent to 
∑r

i=1 φi
k(aiψi) =∑r

i=1 φi
k(ai)φ

i
H,k(ψi) for any k. Taking ai and ψi non-zero only for one value 

of i, this implies that φi
k(aiψi) = φi

k(ai)φ
i
H,k(ψi) for any i. Reciprocally, if this last equally is satisfied for any i, it implies the 

previous one by linearity. �

Lemma 4.17. Two operators A on HA and B on HB are strong φ-compatible if and only if 
∑r

j=1 φ
j
H,k ◦ Ai

j(ψi) =∑s
�=1 B�

k ◦φi
H,�

(ψi)

for any 1 ≤ i ≤ r, 1 ≤ k ≤ s, and ψi ∈HA,i .

Two operators A on HA and B on HB are φ-compatible if and only if 
∑r

j=1 φ
j
H,k ◦ Ai

j(ψi) = ∑s
�=1 Bφ,�

φ,k ◦ φi
H,�

(ψi) for any 
1 ≤ i ≤ r, 1 ≤ k ≤ s, and ψi ∈HA,i .

Proof. On the one hand, one has φH(Aψ) = ⊕s
k=1

(∑r
i, j=1 φ

j
H,k ◦ Ai

j(ψi)
)

and on the other hand BφH(ψ) = ⊕s
k=1

(∑s
�=1∑r

i=1 B�
k ◦ φi

H,�
(ψi)

)
. So, the relation φH(Aψ) = BφH(ψ) is equivalent to 

∑r
i, j=1 φ

j
H,k ◦ Ai

j(ψi) =∑s
�=1

∑r
i=1 B�

k ◦ φi
H,�

(ψi)

for any k. Taking ψi non-zero only for one value of i, this implies 
∑r

j=1 φ
j
H,k ◦ Ai

j(ψi) =∑s
�=1 B�

k ◦ φi
H,�

(ψi) for any i and 
k. By linearity, this relation implies the previous one.

Concerning the φ-compatibility, one can replace B by B̂φ
φ in the previous result. Since B̂φ

φ acts only on φH(HA), one can 
replace B̂φ,�

φ,k by the operators Bφ,�

φ,k : πHB
� ◦ φH(HA) → πHB

k ◦ φH(HA) in the final relation. �

We can extend the maps φi
k as φi0,...,in

k0,...,kn
:A⊗

i0,...,in
→ B⊗

k0,...,kn
by φi0,...,in

k0,...,kn
(a0

i0
⊗ · · · ⊗ an

in
) := φ

i0
k0

(a0
i0
) ⊗ · · · ⊗ φ

in
kn

(an
in
) for any 

i0, . . . , in and k0, . . . , kn , and then we define maps φ̂ : TnA → TnB, for any n ≥ 1, by ⊕r
i1,...,in−1=1

(
a0

i ⊗ a1
i1

⊗ · · · ⊗ an−1
in−1

⊗
an

j

)r
i, j=1 �→ ⊕s

k1,...,kn−1=1

(∑r
i1,...,in−1=1 φ

i,i1,...,in−1, j
k,k1,...,kn−1,�

(a0
i ⊗ a1

i1
⊗ · · · ⊗ an−1

in−1
⊗ an

j )
)s

k,�=1, and, for n = 0, the diagonal matrix with 
entries ai at (i, i) is sent to the diagonal matrix with entries 

∑r
i=1 φi

k(ai) at (k, k). Using (2.1) and (4.1), one can check 
that φ̂ : T•A → T•B is a homomorphism of graded algebras and that φ̂(�1

U (A)) ⊂ �1
U (B), so that φ̂ : �•

U (A) → �•
U (B)

is a homomorphism of graded algebras. Obviously, these properties are consequences of the general situation described in 
Sect. 4.1.

4.3. A F -algebras

We consider now the special case of sums of matrix algebras, A = ⊕r
i=1 Mni and B = ⊕s

k=1 Mmk . We use similar notations 
to the ones in [14]. Let us introduce the projection and injection maps πA

i , πB
k , ιi

A and ιk
B . Let φ : A = ⊕r

i=1 Mni →
B = ⊕s

k=1 Mmk be a one-to-one homomorphism. It is taken in its simplest form, and we normalize it such that, for any 
a = ⊕r

i=1 ai ,

φk(a) := πB
k ◦ φ(a) =

⎛⎜⎜⎜⎜⎜⎝
a1 ⊗ 1αk1 0 · · · 0 0

0 a2 ⊗ 1αk2 · · · 0 0
...

...
. . .

...
...

0 0 · · · ar ⊗ 1αkr 0
0 0 · · · 0 0n0,k

⎞⎟⎟⎟⎟⎟⎠ (4.2)

where the integers αki ≥ 0 are the multiplicities of the inclusions of Mni into Mmk , 0n0,k is the n0,k × n0,k zero matrix such 
that n0,k ≥ 0 satisfies mk = n0,k +∑r

i=1 αkini , and

ai ⊗ 1αki =

⎛⎜⎜⎜⎝
ai 0 0 0
0 ai 0 0
...

...
. . .

...

0 0 · · · ai

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭αki times.

We define the maps φi := φk ◦ ιi : Mni → Mm , which take the explicit form
k A k
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φi
k(ai) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · 0
...

. . .
...

...
... · · · ...

0 · · · 0 0 0 · · · 0
0 · · · 0 ai ⊗ 1αki 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)

The maps φi
k satisfy a stronger relation than (4.1): for any i, j = 1, . . . , r and k = 1, . . . , s,

φi
k(ai)φ

j
k (a′

j) =
{

0 if i �= j

φi
k(aia′

i) if i = j.

If A = An and B = An+1 for a A F -algebra lim−→An , then the multiplicities αki define the Bratteli diagram of this A F -
algebra and vice versa. The integers n0,k are defined by complementarity at each step.

When αki > 0, for 1 ≤ α ≤ αki we define the maps φi
k,α : Mni → Mmk which insert ai at the α-th entry on the diagonal 

of 1αki in the previous expression, so that ai appears only once on the RHS. The maps φk , φi
k , and φi

k,α are homomorphisms 
of algebras and one has

φ = ⊕s
k=1 φk : ⊕r

i=1 Mni → ⊕s
k=1 Mmk ,

φk =∑r
i=1 φi

k ◦ πA
i : ⊕r

i=1 Mni → Mmk , (4.4)

φi
k =∑αki

α=1 φi
k,α : Mni → Mmk .

Notice then that φk(1A) =∑r
i=1

∑αki
α=1 φi

k,α(1Ai ) fills the diagonal of Mmk with 
∑r

i=1 αkini copies of 1 except for the last 
n0,k entries. When n0,k = 0, one gets φk(1A) = 1Bk , otherwise, let

pn0,k := 1mk − φk(1A) ∈ Mmk and pn0 := ⊕s
k=1 pn0,k ∈ B. (4.5)

The pn0,k ’s are diagonal matrices with zero entries except for the last n0,k diagonal entries (bottom right) which are equal 
to 1.

We will use the results in Sect. 3, in particular the diagrammatic descriptions of (odd/even) real spectral triples. Let 
(A, HA, DA, JA) and (B, HB, DB, JB) be two real spectral triples on the algebras A = ⊕r

i=1 Mni and B = ⊕s
k=1 Mmk with 

HA = ⊕
v∈�

(0)
A
HA,v and HB = ⊕

w∈�
(0)
B
HB,w . As we defined the maps i, j on �(0)

A , let us define the similar maps k, � on 

�
(0)
B : for any w ∈ �

(0)
B with πλρ(w) = (mk, m�), k(w) := k and �(w) := �.

Let φH : HA → HB be a φ-compatible linear map of bimodules (φe-compatible as left modules). This map decomposes 
along the maps φv

H,w : HA,v → HB,w between irreps on both sides. For any a = ⊕r
i=1 ai ∈ A, b = ⊕r

i=1 bi ∈ A, and ψ =
⊕

v∈�
(0)
A

ψv , one has φH(ab◦ψ) = φ(a)φ(b)◦φH(ψ) with (using (3.3)) φH(ab◦ψ) = ∑
v∈�

(0)
A

⊕
w∈�

(0)
B

φv
H,w(ai(v)b◦

j(v)ψv) and 
φ(a)φ(b)◦φH(ψ) = ∑

v∈�
(0)
A

⊕
w∈�

(0)
B

φ(a)k(w)φ(b)◦�(w)φ
v
H,w(ψv). We can select a fixed v and choose ψ with only one non-

zero component ψv . Then one gets, for any v ∈ �
(0)
A and any w ∈ �

(0)
B , φw

H,v(ai(v)b◦
j(v)ψv) = φ(a)k(w)φ(a)◦�(w)φ

w
H,v(ψv). Let 

us now consider a fixed index i and a with only non-zero component at i(v) = i, and the same for a fixed j and b: with 
(k, �) = (k(w), �(w)), one has

φv
H,w(aib

◦
jψv) = φi

k(ai)φ
j
�(b j)

◦φv
H,w(ψv) (4.6)

This relation, combined with (4.3), suggests to decompose Cmk in HB,w =Cmk ⊗Cm�◦ as Cmk = [⊕r
i=1 C

ni ⊗Cαki ] ⊕Cn0,k

and similarly for Cm�◦ with a last term Cn0,� , so that one has the orthogonal decomposition

HB,w = Cmk ⊗Cm�◦ = [⊕r
i, j=1 C

ni ⊗Cαki ⊗Cα� j ⊗Cn j◦]
⊕[⊕r

i=1 C
ni ⊗Cαki ⊗Cn0,�◦]

⊕[⊕r
j=1 C

n0,k ⊗Cα� j ⊗Cn j◦]
⊕ [Cn0,k ⊗Cn0,�◦].

(4.7)

For any i, j = 1, . . . , r and k, � = 1, . . . , s, let us define the inclusion

I i, j
k,�

:Cni ⊗Cαki ⊗Cα� j ⊗Cn j◦ ↪→ Cmk ⊗Cm�◦.

Notice that I i, j = I i ⊗ I j◦ with the inclusions I i :Cni ⊗Cαki ↪→Cmk and I j◦ :Cα� j ⊗Cn j◦ ↪→Cm�◦ .
k,� k � k �
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Let F (i,k),( j,�)
A :Cni ⊗Cαki ⊗Cα� j ⊗Cn j◦ →Cn j ⊗Cα� j ⊗Cαki ⊗Cni◦ be the involution ξi ⊗ σ k

i ⊗ σ �
j ⊗ η◦

j �→ η j ⊗ σ �
j ⊗

σ k
i ⊗ ξ◦

i and F k�
B :Cmk ⊗Cm�◦ →Cm� ⊗Cmk◦ the involution ϕk ⊗ ϑ◦

� �→ ϑ� ⊗ ϕ◦
k . Then, one can check that

F k�
B ◦ I i, j

k,�
= I j,i

�,k ◦ F (i,k),( j,�)
A (4.8)

Notice that JA : HA,v → HA,κA(v) can be written as JA = εA(v, dA)( J0 ⊗ J0) ◦ F ij
A since F ij

A = κ̂A,v with (i, j) =
(i(v), j(v)).

In the case of a A F -algebra, the inclusions I i
k (and so I j◦

� and I i, j
k,�

) are defined directly from the Bratteli diagram of the 
algebra, that is, they depend only on the one-to-one homomorphism φ : A → B. We can now write φH in terms of these 
inclusions.

Combining (4.6) and (4.7), the map φv
H,w first reduces to a map Cni ⊗Cn j◦ → Cni ⊗Cαki ⊗Cα� j ⊗Cn j◦ , and using a 

slight adaptation of Lemma 3.1, it reduces to a linear map C → Cαki ⊗Cα� j , that is, to the data of an element u(v, w) ∈
Cαki ⊗Cα� j , such that φv

H,w is the composition of Cni ⊗Cn j◦ � ξi ⊗ η◦
j �→ ξi ⊗ u(v, w) ⊗ η◦

j ∈ Cni ⊗Cαki ⊗Cα� j ⊗Cn j◦

with the inclusion I i, j
k,�

. When αki = 0 or α� j = 0, φv
H,w = 0.

Consequently, the φ-compatible map φH is completely determined by a family of matrices u(v, w) ∈ Mαki×α� j �Cαki ⊗
Cα� j 9 by the previous relation, with (i, j) = (i(v), j(v)) and (k, �) = (k(w), �(w)). Notice that for v, v ′ ∈ �

(0)
A such that 

πλρ(v) = πλρ(v ′), the ranges of φv
H,w and φv ′

H,w are at the same place in HB,w (the range of I i, j
k,�

), and u(v, w) and u(v ′, w)

define a kind of relative positioning and weight between the two ranges. If πλρ(v) �= πλρ(v ′), the ranges are orthogonal in 
HB,w since the ranges of I i, j

k,�
and I i′, j′

k,�
are distinct in the orthogonal decomposition (4.7) when (i, j) �= (i′, j′).

Remark 4.18. For non-real spectral triples, a similar (simpler) result can be obtained: a φ-compatible map φH : HA → HB
is completely determined by the linear maps φv

H,w : HA,v = Cni → HB,w = Cmk for i = i(v) and k = k(w), and so by 
a family of vectors u(v, w) ∈ Cαki such that φv

H,w is the composition of Cni � ξi �→ ξi ⊗ u(v, w) ∈ Cni ⊗ Cαki with the 
inclusion I i

k :Cni ⊗Cαki ↪→Cmk . �

The following result summarizes the construction so far:

Lemma 4.19. There is a family of matrices u(v, w) ∈ Mαki×α� j such that, for any v ∈ �
(0)
A and w ∈ �

(0)
B , with (i, j) = (i(v), j(v)) and 

(k, �) = (k(w), �(w)), one has

φv
H,w(ξi ⊗ η◦

j ) = I i, j
k,�

(ξi ⊗ u(v, w) ⊗ η◦
j ) for any ξi ⊗ η◦

j ∈ HA,v . (4.9)

For any v ∈ �
(0)
A , any w ∈ �

(0)
B , and any a = ⊕r

i=1 ai ∈A, one has

φi
k(ai)I i, j

k,�
(ξi ⊗ u(v, w) ⊗ η◦

j ) = I i, j
k,�

(aiξi ⊗ u(v, w) ⊗ η◦
j )

with (i, j) = (i(v), j(v)) and (k, �) = (k(w), �(w)).
In the even case, if γB is φ-compatible with γA , then φv

H,w , and so u(v, w), can be non-zero only when s(v) = s(w).

Proof. The first statement is a summary of the previous decomposition of φH . The second relation is a direct consequence 
of this decomposition of φH and (4.6). Notice that in the LHS, one could replace φi

k(ai) by φk(a) since only the entries 
positioned according to i in the matrix φk(a) ∈ Mmk , see (4.2) and (4.3), give non-zero contributions once applied on the 
range of I i, j

k,�
. In the even case, the statement is a consequence of Lemma 4.11, which implies here that φv

H,w = 0 when 
s(v) �= s(w). �

Proposition 4.20. Two operators A on HA and B on HB are strong φ-compatible if and only if∑
v2∈�

(0)

A
φ

v2
H,w2

(Av1
v2

ψv1) =∑
w1∈�

(0)

B
B w1

w2
φ

v1
H,w1

(ψv1) (4.10)

for any v1 ∈ �
(0)
A , w2 ∈ �

(0)
B , and ψv1 ∈HA,v1 . They are φ-compatible if and only if∑

v2∈�
(0)

A
φ

v2
H,w2

(Av1
v2

ψv1) =∑
w1∈�

(0)

B
Bφ,w1

φ,w2
φ

v1
H,w1

(ψv1)

for any v1 ∈ �
(0)
A , w2 ∈ �

(0)
B , and ψv1 ∈HA,v1 , where Bφ,w1

φ,w2
:HB,w1 ∩ φH(HA) →HB,w2 ∩ φH(HA) is the decomposition of Bφ

φ

along the HB,w ∩ φH(HA)’s.

9 We use the following convention. Let x, x′ ∈ Cn and y, y′ ∈ Cm . Define Cn ⊗ Cm � x ⊗ y � z = xy� ∈ Mn×m and z′ = x′ y′� ∈ Mn×m , so that z(v) =
〈 ȳ, v〉Cm x for any v ∈ Cm . One then gets ȳ ⊗ x̄ � z∗ and tr(z∗z′) = 〈x, x′〉Cn 〈y, y′〉Cm , and by linearity, a similar relation holds for z = ∑

i xi y�
i and 

z′ =∑
i x′

i y′�
i . This relation will be used in the following.
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Proof. For any ψ = ⊕
v1∈�

(0)
A

ψv1 ∈HA , one has Aψ = ⊕
v2∈�

(0)
A

∑
v1∈�

(0)
A

Av1
v2ψv1 and φH(ψ) = ⊕

w1∈�
(0)
B

∑
v1∈�

(0)
A

φ
v1
H,w1

(ψv1 ), 

so that φH(Aψ) = ⊕
w2∈�

(0)
B

∑
v1,v2∈�

(0)
A

φ
v2
H,w2

(Av1
v2ψv1 ). In a similar way, BφH(ψ) = ⊕

w2∈�
(0)
B

∑
w1∈�

(0)
B

∑
v1∈�

(0)
A

B w2
w1φ

v1
H,w2

(ψv1 ).
The strong φ-compatibility is then equivalent to 

∑
v1,v2∈�

(0)
A

φ
v2
H,w2

(Av1
v2ψv1 ) =

∑
w1∈�

(0)
B

∑
v1∈�

(0)
A

B w2
w1φ

v1
H,w2

(ψv1 ) for any 

w2 ∈ �
(0)
B , and, by linearity (fixing ψ with one non zero component at v1), 

∑
v2∈�

(0)
A

φ
v2
H,w2

(Av1
v2ψv1 ) =

∑
w1∈�

(0)
B

B w2
w1φ

v1
H,w2

(ψv1 ) for any v1 ∈ �
(0)
A and w2 ∈ �

(0)
B .

The φ-compatibility relation follows the same computation with B replaced by Bφ
φ . �

Lemma 4.21. For any a = ⊕r
i=1 ai ∈A and b = ⊕s

k=1 bi ∈ B, πA(a) and πB(b) are strong φ-compatible if and only if, for any v ∈ �
(0)
A , 

any w ∈ �
(0)
B , and any ξi(v) ⊗ η◦

j(v) ∈HA,v , one has

bk(w) I i, j
k,�

(ξi(v) ⊗ u(v, w) ⊗ η◦
j(v)) = I i, j

k,�
(ai(v)ξi(v) ⊗ u(v, w) ⊗ η◦

j(v))

Proof. Inserting (3.3) into (4.10) for A = πA(a) and B = πB(b), one gets φv
H,w(ai(v)ψv) = bk(w)φ

v
H,w(ψv ) for any v ∈ �

(0)
A

and w ∈ �
(0)
B . Using (4.9) for φv

H,w then gives the relation. �

Proposition 4.22. Let uA ∈A be a unitary element and define uB := φ(uA) + pn0 ∈ B (see (4.5)). Then uB is a unitary element such 
that πB(uB) is diagonal (in the orthogonal decomposition defined by φH) and is strong φ-compatible with πA(uA).

Proof. One already knows that πB ◦ φ(uA) is strong φ-compatible with πA(uA) (see Remark 4.5). By construction, the 
range of φH,w is contained only in the first term in brackets (the double direct sum over i, j) in (4.7), while πB(pn0) is 
non-trivial only on the last two terms (the ones with Cn0,k as first factor). This implies that πB(pn0)φH(ψ) = 0 = φH(uAψ)

for any ψ ∈ HA . So, one has πB(uB)φH(ψ) = φH(uAψ) for any ψ ∈ HA , and since πA(uA) and πB(uB) are unitary, by 
Proposition 4.6, πB(uB) is diagonal. �

Proposition 4.23. JB is strong φ-compatible with JA if and only if

u(κA(v), κB(w)) = εA(v,dA)

εB(w,dB)
u(v, w)∗ (4.11)

for any v ∈ �
(0)
A and w ∈ �

(0)
B where dA (resp. dB) is the K O -dimension of A (resp. B).

Proposition 4.29 below gives a criterion on spectral triples on top of A and B so that dA = dB .

Proof. For any ψv = ξi ⊗ η◦
j ∈ HA,v , one has φ

κA(v)
H,κB(w)( JAψv) = εA(v, dA)φ

κA(v)
H,κB(w)(η̄ j ⊗ ξ̄◦

i ) = εA(v, dA)I j,i
�,k

(
η̄ j ⊗

u(κA(v), κB(w)) ⊗ ξ̄◦
i

)
and JBφv

H,w(ψv ) = JB ◦ I i, j
k,�

(ξi ⊗ u(v, w) ⊗ η◦
j ) = εB(w, dB)I j,i

�,k

(
η̄ j ⊗ u(v, w)∗ ⊗ ξ̄◦

i

)
when one 

uses (4.8) and the identification of Mαki×α� j with Cαki ⊗Cα� j (see Footnote 9). This implies the required equivalence. �

Corollary 4.24. If JB is strong φ-compatible with JA, then, for any v ∈ �
(0)
A and w ∈ �

(0)
B , φκA(v)

H,κB(w)
�= 0 if and only if φv

H,w �= 0.

Proof. For any v ∈ �
(0)
A and w ∈ �

(0)
B , with (i, j) = (i(v), j(v)) and (k, �) = (k(w), �(w)), from (4.11), one has

φ
κA(v)
H,κB(w)(ξ j ⊗ η◦

i ) = I j,i
�,k(ξ j ⊗ u(κA(v), κB(w)) ⊗ η◦

i )

= εA(v,dA)

εB(w,dB)
I j,i
�,k(ξ j ⊗ u(v, w)∗ ⊗ η◦

i ).

We then get the equivalence since u(v, w) defines φv
H,w . �

Using what we have constructed so far, in Fig. 2 we show an example of the lifting of some arrows in a Bratteli diagram 
as arrows between two Krajewski diagrams.

For any i, j = 1, . . . , r, let {σ p
i j }1≤p≤μi j be an orthonormal basis of Cμi j (for instance as in Proposition 3.6 or 3.7), to 

which we associate the irreps HA,v defined as in (3.1) for any v = (i, p, j) ∈ �
(0)
A,ni n j

. One can then fix an orthonormal basis 

{ei j,α = ξ
(1) ⊗ η

◦(2)}1≤α≤nin j (sumless Sweedler-like notation) of Cni ⊗Cn j◦ . Let
i,α j,α
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Fig. 2. Lifting of a Bratteli diagram between two Krajewski diagrams. 
(a): An example of a Bratteli diagram for the inclusion Mn1 ⊕ Mn2 ⊕ Mn3 → Mm1 ⊕ Mm2 with multiplicities αki for the inclusion of Mni into Mmk . 
(b): Some liftings of the maps (arrows) given in the Bratteli diagram (a) as maps φv

H,w : HA,v → HB,w , here represented as (green) arrows decorated 
with their defining matrices u(v, w) ∈ Cαki ⊗ Cα� j , see (4.9). The configuration for the arrows v2 → w2 and κA(v2) → κB(w2) is the consequence of 
Corollary 4.24. In the even case, according to Lemma 4.19, one should have s(v2) = s(w2) for u(v2, w2) to be non-zero, and similarly for other arrows. The 
arrows Mn2 → Mm1 and Mn2 → Mm2 in (a) are not lifted in order to lighten the drawing. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

�̃
(0)
A,ni n j

:= �
(0)
A,ni n j

× {1, . . . ,nin j} and �̃
(0)
A := ∪r

i, j=1�̃
(0)
A,ni n j

Then for any ṽ = (v, α) ∈ �̃
(0)
A,ni n j

, let eṽ := ξ
(1)
i,α ⊗ σ

p
i j ⊗ η

◦(2)
j,α ∈ HA,v . The family {eṽ }

ṽ∈�̃
(0)
A

defines an orthonormal basis of 

HA . We define v : �̃(0)
A → �

(0)
A as v(ṽ) = v for ṽ = (v, α). Then, for any v ′ = (i, p′, j) ∈ �

(0)
A,ni n j

, define

ιv ′
v : HA,v ′ → HA,v as ιv ′

v (ξ
(1)
i,α ⊗ σ

p′
i j ⊗ η

◦(2)
j,α ) = ξ

(1)
i,α ⊗ σ

p
i j ⊗ η

◦(2)
j,α .

Proposition 4.25. Let v, v ′ ∈ �
(0)
A , w ∈ �

(0)
B , and ψv ∈HA,v and ψ ′

v ′ ∈HA,v ′ .

When πλρ(v) �= πλρ(v ′), one has 〈φv
H,w(ψv), φv ′

H,w(ψ ′
v ′ )〉HB,w = 0.

When πλρ(v) = πλρ(v ′), one has

〈φv
H,w(ψv),φv ′

H,w(ψ ′
v ′)〉HB,w = 〈ψv , ιv ′

v (ψ ′
v ′)〉HA,v tr(u(v, w)∗u(v ′, w))

In particular, for any ψv ∈HA,v and ψ ′
v ′ ∈HA,v , one has

‖φv
H,w(ψv)‖HB,w

= ‖ψv‖HA,v
‖u(v, w)‖F

〈φv
H(ψv),φv ′

H(ψ ′
v ′)〉HB = 〈ψv , ιv ′

v (ψ ′
v ′)〉HA,v

(∑
w∈�

(0)

B
tr(u(v, w)∗u(v ′, w))

)
(4.12)

where ‖−‖F is the Frobenius norm on matrices, defined as ‖A‖2
F := tr(A∗ A). This implies that φv

H :HA,v →HB is one-to-one if and 
only if 

∑
w∈�

(0)
B

‖u(v, w)‖2
F > 0.

Proof. From a previous remark, the scalar product is zero when πλρ(v) �= πλρ(v ′). So, suppose πλρ(v) = πλρ(v ′). Let 
i = i(v) = i(v ′) and j = j(v) = j(v ′) and consider ψv = ξi ⊗ η◦

j and ψ ′
v ′ = ξ ′

i ⊗ η′ ◦
j , so that φv

H,w(ψv) = ξi ⊗ u(v, w) ⊗ η◦
j

and φv ′
H,w(ψ ′

v ′ ) = ξ ′
i ⊗ u(v ′, w) ⊗ η′ ◦

j both in Cni ⊗ Mαki×α� j ⊗ Cn j � Cni ⊗ Cαki ⊗ Cα� j ⊗ Cn j ⊂ Cmk ⊗ Cm�◦ . Then 
〈φv

H,w(ψv), φv ′
H,w(ψ ′

v ′ )〉HB,w = 〈ξi, ξ ′
i 〉Cni 〈η j, η′

j〉Cn j tr(u(v, w)∗u(v ′, w)) where the trace factor is obtained from the iden-
tification of Mαki×α� j with Cαki ⊗ Cα� j and we have used the fact that λ(v) = λ(v ′) = ni and ρ(v) = ρ(v ′) = n j to write 
the scalar products. This implies the formula in terms of the scalar product on HA,v , from which we deduce the relations 
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on the norm in HB,w and on the scalar product in HB . This last relation implies the norms relation ‖φv
H(ψv)‖2

HB
=

‖ψv‖2
HA,v

(∑
w∈�

(0)
B

‖u(v, w)‖2
F

)
. Then, suppose 

∑
w∈�

(0)
B

‖u(v, w)‖2
F > 0: if ψv ∈ HA,v is such that φv

H(ψv ) = 0, then 

‖ψv‖2
HA,v

= 0, so that ψv = 0, that is, φv
H is one-to-one. Suppose 

∑
w∈�

(0)
B

‖u(v, w)‖2
F = 0, then ‖φv

H(ψv )‖2
HB

= 0 for 
any ψv ∈HA,v , so that φv

H = 0, that is, φv
H is not one-to-one. �

Notice that the condition 
∑

w∈�
(0)
B

‖u(v, w)‖2
F > 0 for any v ∈ �

(0)
A does not implies that φH is one-to-one: one can con-

sider a situation where, for v, v ′ ∈ �
(0)
A such that πλρ(v) = πλρ(v ′), ψv ∈HA,v , and ψ ′

v ′ ∈HA,v ′ , φv
H,w(ψv ) + φv ′

H,w(ψ ′
v ′ ) =

0 ∈HB,w for some w ∈ �
(0)
B .

From (4.12), it is natural to define, for any v, v ′ ∈ �
(0)
A ,

Tv1,v2 :=
{

0 if πλρ(v1) �= πλρ(v2)∑
w∈�

(0)

B
tr(u(v1, w)∗u(v2, w)) if πλρ(v1) = πλρ(v2)

so that (4.12) can be written as 〈φv1
H (ψv1 ), φ

v2
H (ψ ′

v2
)〉HB = 〈ψv1 , ι

v2
v1 (ψ

′
v2

)〉HA,v1
Tv1,v2 .

With πλρ(v1) = πλρ(v2) = (ni, n j), one has Tv2,v1 = ∑
w∈�

(0)
B

tr(u(v2, w)∗u(v1, w)) = ∑
w∈�

(0)
B

tr(u(v1, w)∗u(v2, w)) =
Tv1,v2 , so that (Tv1,v2 )v1,v2 is a Hermitian matrix, so that this matrix can be diagonalized. Recall that the labels v1, v2
depends on the choices of the orthonormal bases {σ p

i j }1≤p≤μi j of the spaces Cμi j ’s: this diagonalization (see proof of Propo-
sition 4.27) is related to a change of these bases. This leads us to introduce the following Hypothesis.

Hypothesis 4.26. We suppose that φH is one-to-one and is such that there are orthonormal bases {σ p
i j }1≤p≤μi j of the spaces 

Cμi j which conform to Proposition 3.6 (in the odd case) or Proposition 3.7 (in the even case), and such that, for the 
decomposition of HA induced by these bases, Tv1,v2 = tv1δ

v1,v2 when πλρ(v1) = πλρ(v2), with real numbers tv such that 
tκA(v) = tv .

A direct consequence of this hypothesis is that 〈φv1
H (ψv1 ), φ

v2
H (ψ ′

v2
)〉HB = 0 for any v1 �= v2 and 〈φv

H(ψv), φv
H(ψ ′

v)〉HB =
tv 〈ψv , ψ ′

v〉HA,v for any v . The one-to-one requirement is natural in the context of A F -algebras, since it generalizes the one-
to-one requirement on φ. On the other hand, the diagonalization requirement is not mandatory for the formal developments 
to come, but it will be useful to compare spectral actions for φ-compatible spectral triples on A and B in Sect. 5. Moreover, 
this requirement is satisfied for some K O -dimensions:

Proposition 4.27. Suppose that JB is strong φ-compatible with JA, and, in the even case, that γB is φ-compatible with γA . Then, in 
K O -dimensions 0, 1, 2, 6, 7, the diagonalization requirement in Hypothesis 4.26 is satisfied for any φH.

Proof. Let {σ p
i j }1≤p≤μi j be orthonormal bases of the spaces Cμi j which satisfy Proposition 3.6 (in the odd case) or Proposi-

tion 3.7 (in the even case). Let us first complete the notations introduced before Proposition 4.25, where we have introduced 
the identification v = (i, p, j). With this notation, we define κA(v) = ( j, p̄, i) where p̄ = 1, . . . , μ ji = μi j and ¯̄p = p (obvi-
ously, this bar is not to be confused with a complex conjugation).

Let {τ q
k�

}1≤q≤νk�
be orthonormal bases of the spaces Cνk� where νk� are the multiplicity of the irreps HB,mkm�

in HB . 
These bases define the irreps HB,w for w = (k, q, �) ∈ �

(0)
B,mkm�

as in (3.1). We have written the map φv
H,w : HA,v → HB,w

in terms of a matrix u(v, w). It is convenient to write φv
H,w explicitly in terms of the bases {σ p

i j } and {τ q
k�

}. In order to 
avoid cumbersome notations, we use the identification Cni ⊗Cμi j ⊗Cn j◦ �Cni ⊗Cn j◦ ⊗Cμi j (resp. Cmk ⊗Cνk� ⊗Cm�◦ �
Cmk ⊗ Cm�◦ ⊗ Cνk� ) so that σ p

i j (resp. τ q
k�

) will appear on the right in the tensor products. Then we can replace the 

notation u(v, w) by the notation uij,p
k�,q ∈ Mαki×α� j which refers to the bases {σ p

i j } and {τ q
k�

} for which, similarly to (4.9), 

one has φv
H,w(ξi ⊗ η◦

j ⊗ σ
p

i j ) = I i, j
k,�

(
ξi ⊗ uij,p

k�,q ⊗ η◦
j

)⊗ τ
q
k�

(no summation). In the p and q variables, Tv1,v2 with πλρ(v1) =
πλρ(v2) = (ni, n j) then becomes Tp1,p2

i j = ∑
k,�,q tr((uij,p2

k�,q )∗uij,p1
k�,q ) for p1, p2 = 1, . . . , μi j . Notice the switch 1 ↔ 2 which 

will be convenient later. Since we suppose that JB is strong φ-compatible with JA , by Proposition 4.23 one get (4.11) in 
terms of the new notations: u ji,p̄

�k,q̄ = εA(i,p, j,dA)
εB(k,�,q,dB)

(uij,p
k�,q)

∗ . This implies that

Tp̄1,p̄2
ji =∑

�,k,q̄ tr((u ji,p̄2
�k,q̄ )∗u ji,p̄1

�k,q̄ ) =∑
k,�,q

εA(i,p2, j,dA)εA(i,p1, j,dA)

εB(k,�,q,dB)2 tr(uij,p2
k�,q (uij,p1

k�,q )∗)

= εA(i, p1, j,dA)εA(i, p2, j,dA)Tp2,p1
i j (4.13)

In the following, we fix the couple (i, j). Let us introduce a change of bases {σ p
i j } to {σ ′ p′

i j } in Cμi j , where σ ′ p′
i j =∑

p up′ pσ
p for a unitary matrix U = (up′ p)p′,p . Then a straightforward computation shows that the matrices u′ i j,p′

defined 
i j k�,q
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relatively to the bases {σ ′ p′
i j } and {τ q

k�
} are u′ i j,p′

k�,q = ∑
p up′ puij,p

k�,q , and the associated T
′ p′

1,p′
2

i j = ∑
k,�,q tr((u

′ i j,p′
2

k�,q )∗u
′ i j,p′

1
k�,q )

become

T
′ p′

1,p′
2

i j =∑
k,�,q

∑
p1,p2

up′
2 p2 up′

1 p1 tr((uij,p2
k�,q )∗uij,p1

k�,q )

=∑
p1,p2

up′
2 p2 up′

1 p1 Tp1,p2
i j ,

so that T′
i j = U Ti j U∗ with U∗ = (upp′

)p′,p (here we use the switch 1 ↔ 2 mentioned before). Since Ti j is a Hermitian matrix, 

there is a unitary matrix U such that T′
i j = U Ti j U∗ is diagonal with real eigenvalues tp

i j = tv . So, for the new basis {σ ′ p′
i j } of 

Cμi j defined by U , T′
i j , and so (Tv1,v2 )v1,v2 , is diagonal.

Let us now look how this diagonalization can be performed according to the constraints in Proposition 3.6 (in the 
odd case) or Proposition 3.7 (in the even case). The first constraint, common to Proposition 3.6 and 3.7, is σ

p̄
ji =

εA(i, p, j, dA)Li j(σ
p
i j) for any p, where εA(i, p, j, dA) = εA(v, dA) is defined in (3.2).

Let us first consider the case i < j (for any K O -dimension), for which εA(i, p, j, dA) = 1 and p̄ = p, so that, from (4.13), 
one has Tp1,p2

ji = Tp2,p1
i j : T ji is the transpose of Ti j . Since this result is true in any basis of Cμi j , this implies T′

ji = Ū T ji Ū∗ . 

On the other hand, σ ′ p′
ji = Li j(σ

′ p′
i j ) =∑

p up′ p Li j(σ
p
i j) =

∑
p up′ pσ

p
ji , so that the change of bases from {σ p

ji } to {σ ′ p′
ji } in Cμ ji

is performed by the unitary matrix Ū . From these two compatible relations, one concludes that the change of basis defined 
by U in Cμi j which diagonalizes T′

i j automatically induces a change of bases Ū in Cμ ji which diagonalizes T′
ji . Notice then 

that the eigenvalues tp
ji in T′

ji are the same as the eigenvalues tp
i j in T′

i j , so that tκA(v) = tv .
Let us now consider i = j in K O -dimensions 0, 1, 7. Then, as before, εA(i, p, i, dA) = 1 and p̄ = p, so that, from (4.13), 

one has Tp1,p2
ii = Tp2,p1

ii , and we already know that Tp1,p2
ii = Tp2,p1

ii : the matrix Tii is a real symmetric matrix, and the 
diagonalizing matrix U can be chosen to be an orthogonal matrix (so a real matrix). This result is compatible with the 
required condition σ p

ii = Lii(σ
p
ii) on the basis since σ ′ p′

ii = Lii(σ
′ p′
ii ) =∑

p up′ p Lii(σ
p
ii) =

∑
p up′ pσ

p
ii =∑

p up′ pσ
p

ii . Here, it is 
trivial that tκA(v) = tv since κA(v) = v .

Finally, consider i = j in K O -dimensions 2, 3, 4, 5, 6. In that situation, if p = 2a (resp. p = 2a − 1) then p̄ = 2a − 1 (resp. 

p̄ = 2a), and εA(i, 2a − 1, i, dA) = 1 and εA(i, 2a, i, dA) = εA . The matrix Tii is a block matrix 
(

Te,e
ii Te,o

ii

To,e
ii To,o

ii

)
where o and e

stand for odd and even: for instance Te,e
ii =

(
T2a1,2a2

ii

)
and Te,o

ii =
(

T2a1,2a2−1
ii

)
with a1, a2 = 1, . . . , μii/2. Then, from (4.13), 

one has T2a1,2a2
ii = T2a2−1,2a1−1

ii , T2a1,2a2−1
ii = εAT2a2,2a1−1

ii , and T2a1−1,2a2
ii = εAT2a2−1,2a1

ii . Considering these block matrices as 
matrices indexed by a1, a2, this means that Te,e

ii = To,o
ii

�
, Te,o

ii = εATe,o
ii

�
, and To,e

ii = εATo,e
ii

�
. Since Tii is Hermitian, one also 

has Te,e
ii = Te,e

ii
∗

and Te,o
ii = To,e

ii
∗

.

In K O -dimensions 3, 4, 5, one has εA = −1, so that Te,o
ii = −Te,o

ii
� = To,e

ii
∗

, which implies that Te,o
ii and To,e

ii are antisym-
metric matrices. We report the analysis for K O -dimensions 2, 6 after the following considerations.

In the even case, since γB is φ-compatible with γA , from Lemma 4.19, u(v, w) is non-zero only when s(v) = s(w), 
so that the sum defining Tv1,v2 implies s(w) = s(v1) = s(v2). The matrix (Tv1,v2 )v1,v2 is then block diagonal along the 
decomposition s(v) = ±1, and its diagonalization can be done by blocks: in terms of the change of bases in Cμi j , this 
means that the unitary U introduced above which diagonalizes Ti j can be chosen to preserve the eigenspaces defined by 
the maps �i j in Proposition 3.7. The decomposition along s(v) = ±1 is preserved by κA since sp̄

ji = ε′′
Asp

i j: so all the previous 
developments are compatible with this choice for U .

In the case i = j and K O -dimensions 2, 6, from Proposition 3.7, one has s(i, 2a, i) = 1 and s(i, 2a − 1, i) = −1, so that 

the block decomposition 
(

Te,e
ii Te,o

ii

To,e
ii To,o

ii

)
corresponds to the block decomposition along s(v) = ±1, and from the previous con-

siderations, this implies that Te,o
ii = To,e

ii = 0. Since Te,e
ii is Hermitean, there is a unitary matrix Ũ such that Ũ Te,e

ii Ũ∗ is 

diagonal, and then by transposition, Ũ To,o
ii Ũ

∗
is also diagonal with the same eigenvalues, that is, tκA(v) = tv . The uni-

tary U =
(

Ũ 0

0 Ũ

)
diagonalizes Tii and this diagonalization is compatible with the required conditions σ 2a

ii = Lii(σ
2a−1
ii )

and σ 2a−1
ii = εALii(σ

2a
ii ): Ũ = (ũa′,a) (resp. Ũ = ( ¯̃ua′,a)) induces a change of the sub-basis {σ 2a

ii } to {σ ′ 2a
ii } (resp. {σ 2a−1

ii }
to {σ ′ 2a−1

ii }) with σ ′ 2a′
ii = ∑

a ũa′,aσ 2a
ii (resp. σ ′ 2a′−1

ii = ∑
a

¯̃ua′,aσ 2a−1
ii ). The required condition is satisfied since then 

σ ′ 2a′−1
ii = εALii(σ

′ 2a′
ii ) = εA

∑
a

¯̃ua′,a Lii(σ
2a
ii ) =∑

a
¯̃ua′,aσ 2a−1

ii . �

Remark 4.28. We suspect that the diagonalization property proved in Proposition 4.27 could be true also in K O -dimensions 
3, 4, 5. But we were unable to prove this fact. Nevertheless, the proposition fortunately covers the K O -dimension 6 used 
in the finite part of the spectral triple for the NC version of the Standard Model of Particles Physics, see [2] and [20] for 
instance. �
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Proposition 4.29. If two (odd/even) real spectral triples are φ-compatible and φH is such that (4.11) holds, then they have the same 
K O -dimension (mod 8).

Proof. Since φH satisfies (4.11), by Proposition 4.23, JB is strong φ-compatible with JA and is diagonal. By Lemma 4.11, 
γB is strong φ-compatible with γA and is diagonal. The difference with Proposition 4.12, is that DB is only φ-compatible 
with DA . So, we already get εB = εA and ε′′

B = ε′′
A: it remains to consider ε′

A and ε′
B .

Since JB is diagonal, one has JBDB =
(

JφB,φ Dφ
B,φ JφB,φ D⊥

B,φ

J⊥B,⊥ Dφ
B,⊥ J⊥B,⊥ D⊥

B,⊥

)
and DB JB =

(
Dφ
B,φ JφB,φ D⊥

B,φ J⊥B,⊥
Dφ
B,⊥ JφB,φ D⊥

B,⊥ J⊥B,⊥

)
, so that Jφ

B,φ
Dφ

B,φ
=

ε′
BDφ

B,φ
Jφ

B,φ
. Inserting this relation in the φ-compatibility conditions on JB and DB implies ε′

B = ε′
A . �

From Proposition 4.20, the strong φ-compatibility condition between DB and DA is equivalent to∑
v2∈�

(0)

A
φ

v2
H,w2

(DA,(v1,v2)ψv1) =∑
w1∈�

(0)

B
DB,(w1,w2)φ

v1
H,w1

(ψv1)

for any v1 ∈ �
(0)
A , w2 ∈ �

(0)
B , and ψv1 ∈HA,v1 , and the φ-compatibility condition is equivalent to∑

v2∈�
(0)

A
φ

v2
H,w2

(DA,(v1,v2)ψv1) =∑
w1∈�

(0)

B
Dφ
B,φ,(w1,w2)φ

v1
H,w1

(ψv1)

where Dφ

B,φ,(w1,w2)
: HB,w1 ∩ φH(HA) → HB,w2 ∩ φH(HA). Unfortunately, from this relation, we cannot define the ele-

mentary operators Dφ

B,φ,(w1,w2)
in terms of the elementary operators DA,(v1,v2) . Only the operators 

∑
w1∈�

(0)
B

Dφ

B,φ,(w1,w2)
:

⊕
w1∈�

(0)
B
HB,w1 ∩ φH(HA) →HB,w2 ∩ φH(HA) can be recovered from the DA,(v1,v2) ’s.

5. Spectral actions for A F -AC manifolds

Given a spectral action (A, HA, DA, JA, γA) for a finite dimensional algebra A and given a compact Riemannian spin 
manifold (M, g) equipped with its canonical spectral triple (C∞(M), L2(S), D M , J M , γM), we consider the spectral triple 
(Â := C∞(M) ⊗ A, HÂ := L2(S) ⊗ HA, DÂ := D M ⊗ 1 + J M ⊗ DA, JÂ := J M ⊗ JA, γÂ := γM ⊗ γA)10 over the Almost 
Commutative algebra Â.

Then, given two spectral triples (A, HA, DA, JA, γA) and (B, HB, DB, JB, γB) for two finite dimensional algebras A
and B, and a one-to-one homomorphism φ : A → B such that the two spectral triple are φ-compatible, with JB strong 
φ-compatible with JA , the aim of this section is to compare the spectral actions on Â and B̂ (for the same compact 
Riemannian spin manifold (M, g)).

In order to have a good physical interpretation of the φ-compatibility, in particular at the level of the fermions, we first 
need to introduce a “normalized” φH map.

5.1. Normalized φH map

Denote by φ0
H : HA → HB a given one-to-one morphism as in Definition 4.1. We suppose that it satisfies Hy-

pothesis 4.26. Then we can choose the orthonormal bases {σ p
i j }1≤p≤μi j of Cμi j that diagonalize (Tv1,v2 )v1,v2 and 

this implies that {φ0
H(eṽ)}

ṽ∈�̃
(0)
A

is a basis of φ0
H(HA). For any ṽ = (v, α), we can identify φ0

H(eṽ) with φ
0,v
H (eṽ). 

Let ṽ1 = (v1, α1) and ṽ2 = (v2, α2). When v1 �= v2, one has 〈φ0,v
H (eṽ1), φ

0,v
H (eṽ2

)〉HB = 0, while, when v = v1 = v2, 
〈φ0,v

H (eṽ1), φ
0,v
H (eṽ2

)〉HB = tv 〈ṽ1, ̃v2〉HA,v = tv δα1,α2 . This implies that {φ0
H(eṽ)}

ṽ∈�̃
(0)
A

is an orthogonal family. Since φ0
H

is one-to-one and ‖φ
0,v
H (eṽ)‖2 = tv , one has tv > 0 for any v ∈ �

(0)
A .

Definition 5.1. The normalized φH map associated to the map φ0
H : HA → HB which satisfies Hypothesis 4.26 is the map 

φH :HA →HB defined by

φH(⊕
v∈�

(0)

A
ψv) :=∑

v∈�
(0)

A
t−1/2

v φ
0,v
H (ψv)

Using (4.6) with b j = 0, one can check that φH satisfies Definition 4.1.

The normalization has been chosen such that the family { f ṽ := φH(eṽ)}
ṽ∈�̃

(0)
A

is an orthonormal basis of φH(HA). This 

basis of φH(HA) can be completed with any orthonormal basis { f ŵ}
ŵ∈�̂

(0)
B

of φH(HA)⊥ where �̂(0)
B is any index set for 

this basis. So, { f ṽ}
ṽ∈�̃

(0)
A

∪ { f ŵ}
ŵ∈�̂

(0)
B

is an orthonormal basis of HB adapted to the decomposition φH(HA) ⊕ φH(HA)⊥ .

10 When the K O -dimension for M and A produces such a spectral triple, see for instance [5].
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We now consider the normalized φH map in place of φ0
H . The relation between the scalar products in HB and HA

reduces to the simple relation 〈φH(ψ), φH(ψ ′)〉HB = 〈ψ, ψ ′〉HA for any ψ, ψ ′ ∈HA , so that φH is an isometry.
In the following, φ-compatibility of operators will be relative to the normalized φH map.
For an operator B on HB which is φ-compatible with an operator A on HA , the components B⊥

φ , Bφ
⊥ , and B⊥⊥ of B in 

the 2 × 2 matrix decomposition induced by HB = φH(HA) ⊕ φH(HA)⊥ will be called non-inherited, while the component 
Bφ

φ will be called inherited. Let us use the acronym “TNIC” for “Terms with Non-Inherited Components” in the following 
technical results, which are the main interest for the use of the normalized φH map:

Lemma 5.2. For i = 1, . . . , n, let Bi be an operator on HB which is φ-compatible with an operator Ai on HA .

1. For any ṽ1, ̃v2 ∈ �̃
(0)
A , one has

〈 f ṽ1 , B1 · · · Bn f ṽ2
〉HB = 〈eṽ1 , A1 · · · Aneṽ2

〉HA + TNIC

2. As a consequence, one has

tr(B1 · · · Bn) = tr(A1 · · · An) + TNIC

Proof. First, let us prove the relation in Point 1 for n = 1. We omit the index i. Using the matrix decomposition Aeṽ =∑
ṽ ′∈�̃

(0)
A

Aṽ ′
ṽ eṽ ′ along the basis {eṽ }

ṽ∈�̃
(0)
A

, the RHS is Aṽ1
ṽ2

. For the LHS, one has 〈 f ṽ1 , B f ṽ2
〉HB = 〈φv1

H (eṽ1 ), B
φ
φφ

v2
H (eṽ2

)〉HB =
〈φv1

H (eṽ1 ), φ
v2
H (Aeṽ2

)〉HB =∑
ṽ∈�̃

(0)
A

Aṽ
ṽ2

〈φv1
H (eṽ1 ), φ

v
H(eṽ)〉HB . This expression is zero for v1 �= v , so the summation reduces 

to the summation over the ṽ = (v1, α) ∈ �̃
(0)
A : 

∑
ṽ=(v1,α) Aṽ

ṽ2
〈φv1

H (eṽ1), φ
v1
H (eṽ)〉HB =∑

ṽ=(v1,α) Aṽ
ṽ2

〈eṽ1 , eṽ〉HA = Aṽ1
ṽ2

.

Let us return to the general situation n ≥ 1 in Point 1. With Bi =
(

Bφ

i,φ B⊥
i,φ

Bφ

i,⊥ B⊥
i,⊥

)
, a straightforward computation shows 

that the only component in B1 · · · Bn that contains only inherited components is in the block (B1 · · · Bn)
φ
φ and it is 

Bφ
1,φ · · · Bφ

n,φ , so that 〈 f ṽ1 , B1 · · · Bn f ṽ2
〉HB = 〈 f ṽ1 , B

φ
1,φ · · · Bφ

n,φ f ṽ2
〉HB + TNIC. The proof that 〈 f ṽ1 , B

φ
1,φ · · · Bφ

n,φ f ṽ2
〉HB =

〈eṽ1 , A1 · · · Aneṽ2
〉HA is the same as before, with Bφ

φ = Bφ
1,φ · · · Bφ

n,φ and A = A1 · · · An which satisfy φH(Aψ) = Bφ
φφH(ψ).

Point 2 is a direct consequence of Point 1. By the previous argument on the product B1 · · · Bn , one has

tr(B1 · · · Bn) =∑
ṽ∈�̃

(0)

A
〈 f ṽ , B1 · · · Bn f ṽ〉HB +∑

ŵ∈�̂
(0)

B
〈 f ŵ , B1 · · · Bn f ŵ〉HB

=∑
ṽ∈�̃

(0)

A
〈 f ṽ , B1 · · · Bn f ṽ〉HB + TNIC

and 
∑

ṽ∈�̃
(0)
A

〈 f ṽ , B1 · · · Bn f ṽ〉HB =∑
ṽ∈�̃

(0)
A

〈eṽ , A1 · · · Aneṽ〉HA + TNIC = tr(A1 · · · An) + TNIC by Point 1. �

Remark 5.3. Point 2 can be proved directly without the assumption that φH is normalized. �

The notion of φ-compatibility has been developed for operators on HA and HB . We define φ-compatibility for fermions 
as follows:

Definition 5.4. A vector ψB is φ-compatible with a vector ψA if ψB − φH(ψA) ∈ φH(HA)⊥ .

Using this definition, we extend the acronym “TNIC” (“Terms with Non-Inherited Components”) to terms which contains 
fermions.

From a physical point of view, the consequence of the normalization of φH is that, for any ψ ∈HA , one has

‖φH(ψ)‖HB = ‖ψ‖HA

since, with ψ = ⊕
v∈�

(0)
A

ψv , one has ‖φH(ψ)‖2
HB

= ∑
v∈�

(0)
A

〈φv
H(ψv ), φv

H(ψv )〉HB = ∑
v∈�

(0)
A

〈ψv , ψv〉HA = ‖ψ‖2
HA

. This 
means the φH respects the normalization of the state vector when it is injected from HA into HB . This state ψ can be 
“diluted” at different “places” in HB (different irreps) but its norm is conserved.

5.2. Comparison of spectral actions

The purpose of this section is to compare the spectral actions for the two φ̂-compatible spectral triples

(Â,H ̂, D ̂ := D M ⊗ 1 + J M ⊗ DA, J ̂ := J M ⊗ JA, γ ̂ := γM ⊗ γA)
A A A A
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and

(B̂,HB̂, DB̂ := D M ⊗ 1 + J M ⊗ DB, J B̂ := J M ⊗ JB, γB̂ := γM ⊗ γB)

for the same compact Riemannian spin manifold (M, g). We suppose that φH :HA →HB is normalized.
We extend in a natural way the map φ to a homomorphism of algebras φ̂ := Id⊗φ : Â→ B̂. In the same way, we denote 

by φ̂H := Id⊗φH :HÂ →HB̂ the natural extension of φH . The notion of (strong) φ̂-compatibility is then naturally defined 
from the notion of (strong) φ-compatibility: an operator B̂ = B M ⊗ B F on HB̂ is (strong) φ̂-compatible with an operator 

Â = AM ⊗ A F on HÂ if φ̂H( Â(χ ⊗ ψ)) = B̂ φ̂

φ̂
φ̂H(χ ⊗ ψ) (resp. φ̂H( Âχ ⊗ ψ) = B̂φ̂H(χ ⊗ ψ)) for any χ ⊗ ψ ∈ HÂ , that is, 

χ ⊗ φH(A F ψ) = χ ⊗ Bφ
F ,φφH(ψ) (resp. χ ⊗ φH(A F ψ) = χ ⊗ B F φH(ψ)).

Lemma 5.2 then extends naturally to:

Lemma 5.5. Let {χc}c∈C an orthonormal basis of L2(S). For i = 1, . . . , n, let B̂ i be an operator on HB̂ which is φ̂-compatible with an 
operator Âi on HÂ .

1. For any ṽ1, ̃v2 ∈ �̃
(0)
A and c1, c2 ∈ C , one has

〈χc1 ⊗ f ṽ1 , B̂1 · · · B̂nχc2 ⊗ f ṽ2
〉HB̂

= 〈χc1 ⊗ eṽ1 , Â1 · · · Ânχc2 ⊗ eṽ2
〉HÂ

+ TNIC

2. As a consequence, one has

Tr(B̂1 · · · B̂n) = Tr( Â1 · · · Ân) + TNIC

Proof. The proof is similar to the one of Lemma 5.2, noticing that the geometrical part plays no role in the main steps. �

We follow [20] to define the bosonic and the fermionic spectral actions. For any ω ∈ �1
U (Â), let consider the operator 

DÂ,ω
= DÂ + ω + ε′

Â JÂω J−1
Â where ω is used in place of πDÂ

(ω). Let f : R → R be a positive even function. Then the 
bosonic spectral action is defined by

Sb[ω] := Tr f (DÂ,ω/)

for a real cutoff parameter , and where Tr is the operator trace. We require that f is such that f (DÂ,ω
/) is a traceclass 

operator.
To define the fermionic spectral action, we introduce the vector space of Grassmann vectors H̃Â defined from HÂ , and 

the notation ψ̃ ∈ H̃Â for any ψ ∈ HÂ . Then, in the even case, for any ψ̃ ∈ H̃+
Â , where H̃+

Â corresponds to Grassmann 
vectors associated to vectors ψ ∈H+

Â = ker(γÂ − 1) (even elements in HÂ), the fermionic spectral action is

S f [ω, ψ̃] := 〈 JÂψ̃, DÂ,ωψ̃〉H̃Â

From now on, we suppose that dim M = 4 and, to simplify the presentation (to focus mainly on the algebraic part of the 
spectral actions), we suppose that (M, g) is compact and flat, so that all the Riemann tensors will be trivial in the following.

Let us use the following notations. For any ω ∈ �1
U (Â) with πDÂ

(ω) = γ μ ⊗ Aμ + γM ⊗ ϕ , for Hermitian operators Aμ

and ϕ on C∞(M) ⊗HA , define Bμ := Aμ − JAAμ J−1
A and � := DA + ϕ + JAϕ J−1

A , so that DÂ,ω
= D M ⊗ 1 + γ μ ⊗ Bμ +

γM ⊗ �. Let ∇ S
μ be the spin connection on S , and consider the vector bundle E = S ⊗ (M × HA) such that L2(E) = HÂ , 

and let ∇ E
μ := ∇ S

μ ⊗ 1 + 1 ⊗ (∂μ + iBμ) be the natural twisted connection on E defined by the spectral triple, so that 
DÂ,ω

= −iγ μ∇ E
μ + γM ⊗ �. Finally, let Dμ := ∂μ + i ad(Bμ) and Fμν := ∂μBν − ∂ν Bμ + i[Bμ, Bν ]. In the same way, we 

introduce ω′ , A′
μ , ϕ′ , B ′

μ , �′ , E ′ , D ′
μ , F ′

μν for the algebra B̂.

Let fn := ∫∞
0 f (x)xn−1dx be the moments of f for n > 0, then we have the general result [20, Prop. 8.12] that we have 

simplified to take into account the fact that the metric g is Euclidean11:

Proposition 5.6. Suppose that the K O -dimension of A is even, then

Tr f (DÂ,ω/) ∼
∫
M

L(Bμ,�)d4x +O(−1)

11 In particular there is no Einstein-Hilbert Lagrangian since the purely geometric part needs not be compared from Â to B̂.
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with

L(Bμ,�) = LB(Bμ) +Lϕ(Bμ,�)

where LB(Bμ) = f (0)

24π2 tr(Fμν F μν), and, up to a boundary term,

Lϕ(Bμ,�) = −2 f2
2

4π2 tr(�2) + f (0)

8π2 tr(�4) + f (0)

8π2 tr
(
(Dμ�)(Dμ�)

)
We use the same function f and the same cut-off  for the spectral actions on Â and B̂.
We suppose that ω ∈ �1

U (Â) and ω′ ∈ �1
U (B̂) are φ̂-compatible in the sense that πDB̂

(ω′) and πDÂ
(ω) are φ̂-compatible. 

Since the family of vectors {γ μ, γM} is free in the Clifford algebra generated by the γ μ ’s, this implies that A′
μ (resp. ϕ′) 

is φ̂-compatible with Aμ (resp. ϕ). The strong φ-compatibility between JB and JA then implies that B ′
μ (resp. �′) is φ̂-

compatible with Bμ (resp. �). Notice then that ∂μ�′ (resp. ∂μB ′
ν ) is φ̂-compatible with ∂μ� (resp. (resp. ∂μBν ).12 We then 

have:

Proposition 5.7. Suppose that ω ∈ �1
U (Â) and ω′ ∈ �1

U (B̂) are φ̂-compatible in the previous sense. Then

LB̂,B ′(B ′
μ) = LÂ,B(Bμ) + TNIC

LB̂,ϕ′(B ′
μ,�′) = LÂ,ϕ(Bμ,�) + TNIC

Proof. From Proposition 5.6, all the terms in LB̂,B ′ (B ′
μ) and LB̂,ϕ′(B ′

μ, �′) are traces of polynomials of φ̂-compatible ele-
ments. So, according to Lemma 5.5, up to terms with non-inherited components, they are equal to the similar expression in 
terms of traces of polynomials of the corresponding elements on Â. �

Remark 5.8. This Proposition can be proved without the assumption on the normalization of φH , see Remark 5.3. �

A slight extension of Proposition 4.13 shows that ω ∈ �1
U (Â) and ω′ := φ̂(ω) ∈ �1

U (B̂) are φ̂-compatible. But then ω′
contains only inherited degrees of freedom, and so this situation is quite trivial from a physical point of view.

Proposition 5.9. If ψ̃ ′ is φ̂-compatible with ψ̃ , then

SB̂, f [ω′, ψ̃ ′] = 〈 J B̂ψ̃ ′, DB̂,ω′ ψ̃ ′〉H̃B̂
= 〈 JÂψ̃, DÂ,ωψ̃〉H̃Â

+ TNIC = SÂ, f [ω, ψ̃] + TNIC

Proof. Since πDB̂
(ω′) and πDÂ

(ω) are φ̂-compatible, DB̂,ω′ and DÂ,ω
are φ̂-compatible, and since JB and JA are strong 

φ-compatible, then JB̂ and JÂ are strong φ̂-compatible.

Using previously defined notations, one can write ψ̃ ′ =∑
c,ṽ ψ̃ ′ c,ṽχc ⊗ f ṽ +∑

c,ŵ ψ̃ ′ c,ṽχc ⊗ f ŵ and ψ̃ =∑
c,ṽ ψ̃c,ṽχc ⊗eṽ . 

Since ψ̃ ′ and ψ̃ are φ̂-compatible, one has ψ̃ ′ c,ṽ = ψ̃c,ṽ for any c, ̃v . So, 〈 JB̂ψ̃ ′, DB̂,ω′ ψ̃ ′〉H̃B̂
= ∑

c1,c2,ṽ1,ṽ2
ψ̃ ′ c1,ṽ1 ψ̃ ′ c2,ṽ2

〈 JB̂χc1 ⊗ f ṽ1 , DB̂,ω′χc2 ⊗ f ṽ2
〉H̃B̂

= εB̂
∑

c1,c2,ṽ1,ṽ2
ψ̃ ′ c1,ṽ1 ψ̃ ′ c2,ṽ2 〈χc1 ⊗ f ṽ1 , JB̂DB̂,ω′χc2 ⊗ f ṽ2

〉H̃B̂
. From Lemma 5.5, one 

has 〈χc1 ⊗ f ṽ1 , JB̂DB̂,ω′χc2 ⊗ f ṽ2
〉H̃B̂

= 〈χc1 ⊗ eṽ1 , JÂDÂ,ω
χc2 ⊗ eṽ2

〉H̃Â
+ TNIC so that, since εB̂ = εÂ , 〈 JB̂ψ̃ ′, DB̂,ω′ ψ̃ ′〉H̃B̂

= εÂ
∑

c1,c2,ṽ1,ṽ2
ψ̃c1,ṽ1 ψ̃c2,ṽ2 〈χc1 ⊗ f ṽ1 , JÂDÂ,ω

χc2 ⊗ eṽ2
〉H̃Â

+ TNIC = 〈 JÂψ̃, DÂ,ω
ψ̃〉H̃Â

+ TNIC. �

Remark 5.10. Notice that the proof of this Proposition requires the assumption on the normalization of φH . �

Remark 5.11. Notice that the formal proofs presented in the previous Propositions, which compare the spectral action on B̂
to the spectral action on Â, do not reveal the terms which mix inherited and non-inherited components. A concrete and 
complete computation is necessary to compare precisely the two Lagrangians. These more concrete computations will be 
presented elsewhere. �

These results can be collected to construct a sequence {(Ân, HÂn
, DÂn

, JÂn
, γÂn

)}n≥0) of even real spectral triples (on 
AC manifolds) which are φ̂n,n+1-compatible and a sequence of their corresponding spectral actions Sb[ωn] + S f [ωn, ψ̃n] with 
a control about their inherited and non-inherited terms. Using slight modifications of Proposition 4.14 and 4.22, a gauge 

12 Thanks to the fact that φH does not depend on the points in M .
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transformation on Ân can be transported to a gauge transformation on Ân+1. So, we end up with a sequence of compatible 
NCGFTs constructed on top of the defining sequence of an A F -algebra A = lim−→An .

5.3. Some considerations about the limit

The question of the “limit” of such a sequence {(An, Hn, Dn)}n≥0 of φ-compatible (or strong φ-compatible) spectral 
triples will not be discussed in details in this paper, since, as we will explain, it requires a lot more of analysis concerning 
in particular the involved operators. Current investigations are in progress concerning these points. In the following, we only 
outline some results in relation to other works.

By construction, the sequence of algebras An has a limit A∞ = ⋃
n≥0 An . When completed, this algebra is the C∗-

algebra A, and A∞ is a natural sub-algebra of “smooth elements”. Since the morphisms φH,n,n+1 are isometries (thanks 
to the normalization assumption), the direct limit of the sequence (Hn, φH,n,n+1) is well-defined. Let H := lim−→Hn with 
φH,n :Hn →H the isometries such that φH,m ◦ φH,n,m = φH,n for any n < m. This direct limit can be constructed explicitly 
as follows. Let K0 :=H0 and, for any n ≥ 1, let Kn :=Hn �Hn−1 where we identify Hn−1 with its range in Hn via φH,n−1,n , 
so that Hn =K0 ⊕ · · · ⊕Kn . Then

H = ⊕n≥0 Kn = {
(ξn)n≥0 | ξn ∈ Kn and

∑
n≥0‖ξn‖2 < ∞}

.

This Hilbert space supports a canonical representation π of A (see [7] for instance).
A candidate for a spectral triple as a limit of {(An, Hn, Dn)}n≥0 has been constructed in [7] when all the Dirac operators 

are strongly-φ-compatible. But requiring only φ-compatibility needs to make use of a more subtle way to define the Dirac 
operator at the limit.

For instance, one could use the approach proposed in [8] (see references therein) which relies on the following assump-
tion (adapted to our finite dimensional situation): a sequence {Ln} of operators on the Hilbert spaces Hn converges strongly 
and uniformly if, for any ε, δ > 0, there is a number n(ε, δ) such that for any n(ε, δ) ≤ n < m and for any ψ ∈Hn such that 
‖ψ‖Hn

< δ, then ‖(LmφH,n,m − φH,n,m Ln)ψ‖Hm
< ε . If the sequence {Ln} satisfies this convergence criteria, then, for any 

ψ ∈Hn , the operator L given by the equality LφH,nψ = limm→∞ φH,m LmφH,n,mψ is well defined.
Notice that the criteria given above is trivially satisfied if the Ln ’s are strongly-φ-compatible, since then LmφH,n,mψ =

φH,n,m Lnψ for any ψ ∈ Hn , so that, for a sequence of strong φ-compatible operators, the limit always exists. As already 
mentioned, this is the case for the approach in [7]. However, the existence of this limit is an extra requirement for a 
sequence of φ-compatible operators, for instance the sequence of Dirac operators (and the real operators as well as the 
grading operators). Moreover, showing that it produces a spectral triple is also a question to be investigated. This demands 
for an analysis that is beyond the scope of this paper. It will be the subject of forthcoming studies.

In [3], the authors propose a spectral triple on A F -algebras for which the Dirac operator is constructed as follows, using 
our previous notations: one considers a suitable sequence of positive real numbers {αi}i≥0 and D :=∑∞

i=0 αi Q i where Q i
is the orthogonal projection on Ki ⊂H. For any n ≥ 0, let us define a spectral triple (An, Hn, Dn) using the truncated Dirac 
operator Dn := ∑n

i=0 αi Q i on Hn . Then it is easy to verify that the Dn ’s are strong φ-compatible and the limit of this 
sequence is D .

Parts of this work deal with general structures to construct a sequence of spectral triples on any inductive limit of C∗-
algebras. We expect that this could be relevant for applications in various domains. For instance, in [10] (see also references 
therein), taking inspiration from Loop Quantum Gravity (LQG), a sequence of spectral triples on an inductive sequence of 
C∗-algebras generated by loops on an inductive system of finite graphs is considered, using the strong φ-compatibility 
condition. Considering the limit of this sequence, the authors obtain a candidate for a spectral triple over the space of 
connections as it is used in LQG. A natural question concerns the relevance of the full potential of our framework (real 
and/or even spectral triples, spectral actions. . . ) in this context, in particular, what the φ-compatibility condition could 
bring to these constructions.

6. Conclusion

In this paper we have presented a framework to construct sequences of spectral triples on top of inductive sequences 
defining A F -algebras. One main result concerns the structure of the map lifting arrows in Bratteli diagrams to arrows 
between Krajewski diagrams. We emphasize that the normalization assumption plays a key role. For instance, it can be 
used to show that the spectral action at each step of the sequence contains the spectral action of the previous step, as well 
as new terms coupling inherited and new degrees of freedom. Moreover, it permits to get a limit for these sequences, as 
it appears for the Hilbert spaces. Further investigations are in progress in order to construct and interpret more realistic 
models in this new framework and to study the possible limits of these sequences.
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