Sequences of Noncommutative Gauge Field Theories on AF-algebras

(Join work with Gaston Nieuviarts)

Noncommutative geometry: metric and spectral aspects, September 2022

Thierry Masson

Centre de Physique Théorique

Why?

GUT:

- "big group" → "smaller group" by Spontaneous Symmetry Breaking Mechanism(s) (SSBM).
- Sequence of Gauge Field Theories (GFT) with decreasing numbers of degrees of freedom.

Known Facts:

- **1** A finite-dimensional C^* -algebra: $\mathcal{A} = M_{n_1} \oplus \cdots \oplus M_{n_r}$ up to isomorphism. $M_n := M_n(\mathbb{C})$ is the space of $n \times n$ matrices over \mathbb{C} .
 - ▶ NCGFT have been investigated on "almost commutative" algebras $C^{\infty}(M) \otimes \mathcal{A}$ (manifold M).
 - \triangleright These NCGFT are of Yang-Mills-Higgs types with symmetry group related to the automorphisms of \mathcal{A} .
 - ▶ Propositions for NC versions of the Standard Model of Particle Physics.
- **2** AF C^* -algebra: control the approximation of the algebra by finite-dimensional C^* -algebras.
 - ▶ Defining inductive sequence: $A = \lim_{n \to \infty} A_n$ where A_n is finite-dimensional.
 - K_0 -group of \mathcal{A} is "approximated" by the limit of the K_0 -groups of the \mathcal{A}_n .

Motivation:

- Embed a "small algebra" into a "larger algebra" and try to relate some NCGFT on them.
- *AF*-algebra → sequence of NCGFT with increasing numbers of degrees of freedom.

How?

- Defining sequence of an *AF*-algebra: $\mathcal{A} = \varinjlim_{n} \mathcal{A}_n$, \mathcal{A}_n finite-dimensional. $\{(\mathcal{A}_n, \phi_{n,m}) \mid 0 \leq n < m\}$ with $\phi_{n,m} : \mathcal{A}_n \to \mathcal{A}_m$ and $\phi_{m,p} \circ \phi_{n,m} = \phi_{n,p}$ for any $0 \leq n < m < p$.
- To any A_n , associate a NCGFT denoted by NCGFT A_n .
 - **→** Sequence {NCGFT A_n } $_{n\geq 0}$ on top of $\{A_n\}_{n\geq 0}$.
- Find a good definition for the relation between NCGFT_{A_n} and NCGFT_{A_{n+1}}. This definition must depend on $\phi_{n,n+1}: A_n \to A_{n+1}$.
- This needs some " ϕ -compatibility" conditions between elements in NCGFT_{A_{n+1}}.
 - \longrightarrow This depends on the way one defines NCGFT_A for an algebra A.

This is what we propose in our two papers:

- Masson, T. and Nieuviarts, G. (2021). Derivation-based Noncommutative Field Theories on AF algebras. International Journal of Geometric Methods in Modern Physics 18.13, p. 2150213
- Masson, T. and Nieuviarts, G. (July 2022). Lifting Bratteli Diagrams between Krajewski Diagrams: Spectral Triples, Spectral Actions, and *AF* algebras. eprint: 2207.04466

Outline

- General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- **3** Derivation-based NCGFT on *AF*-algebras
- 4 NCGFT based on spectral triples on AF-algebras
- **5** Derivation-based NCGFT: Numerical explorations of examples

- **1** General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- **3** Derivation-based NCGFT on AF-algebras
- MCGFT based on spectral triples on AF-algebras
- 5 Derivation-based NCGFT: Numerical explorations of examples

How to model a Gauge Field Theory?

Gauge field theories are based on physical ideas...

... and these ideas require some mathematical structures in order to be implemented:

- A space of local symmetries (local = they depend on points in space-time).

 gauge group (finite gauge transformations) or Lie algebra (infinitesimal gauge transformations)...
- 2 An implementation of the symmetry on matter fields.
 Use the natural **representation theory** from the mathematical framework.
- **3** A **differential structure** with which equations of motion are written.
- A kind of covariant derivative → "minimal coupling" between matter fields and gauge fields.
- **5** A way to write a gauge invariant Lagrangian density. The **action functional** from which the equations of motion are deduced.

Many (mathematical) frameworks described in François, J., Lazzarini, S., and Masson, T. (2014). "Gauge field theories: various mathematical approaches". In: *Mathematical Structures of the Universe*. Ed. by Eckstein, M., Heller, M., and Szybka, S. J. Kraków, Poland: Copernicus Center Press, pp. 177–225

How to model a GFT? One Pattern to rule them all...

A common pattern to all known mathematical frameworks (fiber bundles, NCG, Lie algebroids...):

In the present situation (NCG):

- "Algebraic Structure": a finite dimensional algebras A_F (defining an AF-algebra).
- "Geometric Structure": an ordinary space-time *M*.
- "Global Structure": the almost commutative algebras $\mathcal{A} = C^{\infty}(M) \otimes \mathcal{A}_F$.
- *AF*-algebras will only concern the "Algebraic Structure" of these NCGFT's.
- The underlying geometry is "constant" (relative to the inductive limit defining the *AF*-algebra).

Open question: can we use some *AF*-algebra also for the "Geometric Structure"?

7

How to model a NCGFT?

The basic ingredient is an associative algebra A. Then:

Representation theory: a left (projective finitely generated) module \mathcal{M} over \mathcal{A} .

Gauge group: Aut(\mathcal{M}) or $\mathcal{U}(\mathcal{A})$.

Differential structure: any differential calculus defined on top of A.

There is no canonical construction here: explicit choice to be made.

- lacktriangle The derivation-based differential calculus canonically associated to the algebra \mathcal{A} .
- Spectral triple (\mathcal{A} , \mathcal{H} , \mathcal{D}): need to add supplementary structures, and $\mathcal{M} = \mathcal{H}$.

Covariant derivative: a NC connection defined on $\mathcal M$ relative to the chosen differential calculus.

In general it is described by a "connection 1-form" in the chosen space of forms.

Action functional: depends on the choice of the differential calculus.

- Derivation-based differential calculus → integration and Hodge star operator may be defined...
- Spectral triple → Spectral action and Fermionic action...

Objective: Make all these structures compatible with the imbeddings $\phi_{n,n+1}: A_n \to A_{n+1}$.

8

Derivation-based NCG

Dubois-Violette, M. (1988). Dérivations et calcul differentiel non commutatif. C.R. Acad. Sci. Paris, Série I 307, pp. 403–408

Consider an associative algebra A.

- Let $\mathcal{Z}(\mathcal{A}) = \{a \in \mathcal{A} \mid ab = ba, \forall b \in \mathcal{A}\}$ be its center.
- - \longrightarrow Lie algebra and $\mathcal{Z}(\mathcal{A})$ -module.
- $\Omega^p_{\mathrm{Der}}(\mathcal{A})$ the vector space of $\mathcal{Z}(\mathcal{A})$ -multilinear antisymmetric maps from $\mathrm{Der}(\mathcal{A})^p$ to \mathcal{A} . Convention: $\Omega^0_{\mathrm{Der}}(\mathcal{A}) = \mathcal{A}$.
- $\Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A}) = \bigoplus_{p \geq 0} \Omega_{\mathrm{Der}}^{p}(\mathcal{A})$ is a \mathbb{N} -graded differential algebra:
 - $\blacktriangleright \ (\omega \wedge \eta)(\mathfrak{X}_1, \dots, \mathfrak{X}_{p+q}) \coloneqq \tfrac{1}{p!q!} \sum_{\sigma \in \mathfrak{S}_{p+q}} (-1)^{|\sigma|} \omega(\mathfrak{X}_{\sigma(1)}, \dots, \mathfrak{X}_{\sigma(p)}) \eta(\mathfrak{X}_{\sigma(p+1)}, \dots, \mathfrak{X}_{\sigma(p+q)})$
 - $\label{eq:definition} \bullet \ \mathrm{d}\omega(\mathfrak{X}_1,\dots,\mathfrak{X}_{p+1}) \coloneqq \sum_{i=1}^{p+1} (-1)^{i+1} \mathfrak{X}_i \cdot \omega(\mathfrak{X}_1,\dots \overset{i}{\vee}\dots,\mathfrak{X}_{p+1}) + \sum_{1 \leq i < j \leq p+1} (-1)^{i+j} \omega([\mathfrak{X}_i,\mathfrak{X}_j],\dots \overset{i}{\vee}\dots \overset{i}{\vee}\dots,\mathfrak{X}_{p+1})$

9

Derivation-based NCG: matrix algebra

Dubois-Violette, M., Kerner, R., and Madore, J. (1990b). Noncommutative Differential Geometry of Matrix Algebras. J. Math. Phys. 31, p. 316

Let $\mathcal{A} = M_n(\mathbb{C})$.

- $\mathcal{Z}(M_n) = \mathbb{C}\mathbb{1}_n$ where $\mathbb{1}_n$ is the unit matrix in M_n .
- $Der(M_n) = Int(M_n) \simeq \mathfrak{sl}_n \text{ for } \mathfrak{sl}_n \ni a \mapsto \mathrm{ad}_a \in Int(M_n).$
- $\{E_{\alpha}\}_{\alpha \in I_n}$ be a basis of \mathfrak{sl}_n , where I_n is a totally ordered set with $\operatorname{card}(I_n) = n^2 1 = \dim \mathfrak{sl}_n$; $\{\theta^{\alpha}\}_{\alpha \in I_n}$ be its dual basis in \mathfrak{sl}_n^* ; $\{\partial_{\alpha} := \operatorname{ad}_{F_{\alpha}}\}_{\alpha \in I_n}$ the associated basis of $\operatorname{Der}(M_n) = \operatorname{Int}(M_n)$.
- Canonical metric $g : \operatorname{Der}(M_n) \times \operatorname{Der}(M_n) \to \mathcal{Z}(M_n) \simeq \mathbb{C}$ defined by $g(\operatorname{ad}_a, \operatorname{ad}_b) := \operatorname{tr}(ab)$ for $a, b \in \mathfrak{sl}_n$.
- Noncommutative integral \int_{M_n} on $\Omega_{\mathrm{Der}}^{\bullet}(M_n)$: zero on $\Omega_{\mathrm{Der}}^p(M_n)$ for $p < n^2 1$ and $\int_{M_n} \omega := \mathrm{tr}(a)$ for $\omega \in \Omega_{\mathrm{Der}}^{n^2 1}(M_n)$ written as $\omega = a\sqrt{|g|}\theta^{\alpha_1^0} \wedge \cdots \wedge \theta^{\alpha_{n^2 1}^0}$ for a unique $a \in M_n$ (where $\alpha_1^0 < \cdots < \alpha_{n^2 1}^0$).
- Hodge star operator $\star : \Omega_{\rm Der}^p(M_n) \to \Omega_{\rm Der}^{n^2-1-p}(M_n)$ (using g).
- \triangle We differ from the original paper which uses a convention with extra factor $\frac{1}{n}$ for g and \int_{M_n} .

Derivation-based NCGFT: matrix algebra

- NC Connection: $\nabla_{\mathfrak{X}} : \mathcal{M} \to \mathcal{M}$ defined for any $\mathfrak{X} \in \text{Der}(\mathcal{A})$. $\nabla_{f\mathfrak{X}} = f\nabla_{\mathfrak{X}}, \quad \nabla_{\mathfrak{X}+\mathfrak{Y}} = \nabla_{\mathfrak{X}} + \nabla_{\mathfrak{Y}}, \quad \nabla_{\mathfrak{X}}(ae) = (\mathfrak{X} \cdot a)e + a\nabla_{\mathfrak{X}}e.$
- Curvature: $R(\mathfrak{X}, \mathfrak{Y})e := (\nabla_{\mathfrak{X}}\nabla_{\mathfrak{Y}} \nabla_{\mathfrak{Y}}\nabla_{\mathfrak{X}} \nabla_{[\mathfrak{X},\mathfrak{Y}]})e$ for any $e \in \mathcal{M}$ and $\mathfrak{X}, \mathfrak{Y} \in \mathrm{Der}(\mathcal{A})$.
- Action of the gauge group $\mathcal{G} = \operatorname{Aut}(\mathcal{M})$ is well-defined...
- Simplified situation: left module $\mathcal{M} = \mathcal{A}$.
 - $\textbf{ NC Connection 1-form: } \omega \in \Omega^1_{\mathrm{Der}}(\mathcal{A}) \text{ such that } \nabla_{\mathfrak{X}} e = (\mathfrak{X} \cdot e) + e \omega(\mathfrak{X}) \text{ for any } e \in \mathcal{M} = \mathcal{A}.$
 - NC Curvature 2-form: $R(\mathfrak{X},\mathfrak{Y})e = e\Omega(\mathfrak{X},\mathfrak{Y})$ with $\Omega(\mathfrak{X},\mathfrak{Y}) := (d\omega)(\mathfrak{X},\mathfrak{Y}) [\omega(\mathfrak{X}),\omega(\mathfrak{Y})]$
 - Suppose E_{α} are anti-Hermitean (traceless) matrices in \mathfrak{sl}_n (and define a basis).
 - ▶ Canonical connection : $\nabla_{\partial_{\alpha}} e := E_{\alpha} e$ for any $\alpha \in I_n$ and $e \in \mathcal{M} = \mathcal{A} \implies \mathring{\omega} = E_{\alpha} \theta^{\alpha}$. ⇒ Define $\omega = \omega_{\alpha} \theta^{\alpha} = \mathring{\omega} - B_{\alpha} \theta^{\alpha} = (E_{\alpha} - B_{\alpha}) \theta^{\alpha}$.
 - Action functional: $S[\omega] = -\int_{M_n} \Omega \wedge \star \Omega = -\frac{1}{2} \sum_{\alpha,\beta} \operatorname{tr}([B_\alpha, B_\beta] C_{\alpha\beta}^{\gamma} B_{\gamma})^2$.

Derivation-based NCGFT: $\widehat{\mathcal{A}} := C^{\infty}(M) \otimes M_n$

Dubois-Violette, M., Kerner, R., and Madore, J. (1990a). Noncommutative Differential Geometry and New Models of Gauge Theory. J. Math. Phys. 31, p. 323

- $\operatorname{Der}(\widehat{\mathcal{A}}) = [\Gamma(M) \otimes \mathbb{1}_n] \oplus [C^{\infty}(M) \otimes \mathfrak{sl}_n]$ where $\Gamma(M) = \operatorname{Der}(C^{\infty}(M))$ is the space of vector fields on M.
- $\{\partial_{\mu}\}_{\mu=1,\dots,\dim M}$ basis of derivations on the geometric part and $\{\mathrm{d}x^{\mu}\}$ its dual basis of 1-forms.
- $\mathcal{M} = \widehat{\mathcal{A}}$, connection 1-form $\omega = \omega_{\mu} dx^{\mu} + \omega_{\alpha} \theta^{\alpha} = A_{\mu} dx^{\mu} + (E_{\alpha} B_{\alpha}) \theta^{\alpha}$ with $A_{\mu}, B_{\alpha} \in \widehat{\mathcal{A}}$.
- Curvature $\Omega = \frac{1}{2}\Omega_{\mu\nu}\mathrm{d}x^{\mu}\wedge\mathrm{d}x^{\nu} + \Omega_{\mu\alpha}\mathrm{d}x^{\mu}\wedge\theta^{\alpha} + \frac{1}{2}\Omega_{\alpha\beta}\theta^{\alpha}\wedge\theta^{\beta}$ with

$$\Omega_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - [A_{\mu}, A_{\nu}], \quad \Omega_{\mu k} = -(\partial_{\mu}B_{\alpha} - [A_{\mu}, B_{\alpha}]), \quad \Omega_{k\ell} = -([B_{\alpha}, B_{\beta}] - C_{\alpha\beta}^{\gamma}B_{\gamma}).$$

- Lagrangian: $-\frac{1}{2}\operatorname{tr}(\Omega_{\mu\nu}\Omega^{\mu\nu}) \operatorname{tr}(\Omega_{\mu\alpha}\Omega^{\mu\alpha}) \frac{1}{2}\operatorname{tr}(\Omega_{\alpha\beta}\Omega^{\alpha\beta})$.
- \blacksquare NCGFT $_{\widehat{\mathcal{A}}}$ is of Yang-Mills-Higgs type...

Derivation-based NCG: $A = \bigoplus_{i=1}^{n} A_i$

Masson, T. and Nieuviarts, G. (2021). Derivation-based Noncommutative Field Theories on AF algebras. International Journal of Geometric Methods in Modern Physics 18.13, p. 2150213

Let
$$\mathcal{A} = \bigoplus_{i=1}^n \mathcal{A}_i$$
.

- $\blacksquare \pi^i : \mathcal{A} \to \mathcal{A}_i \text{ and } \iota_i : \mathcal{A}_i \to \mathcal{A}.$
- Center of A: $\mathcal{Z}(A) = \bigoplus_{i=1}^r \mathcal{Z}(A_i)$.
- Derivations on \mathcal{A} : $\operatorname{Der}(\mathcal{A}) = \bigoplus_{i=1}^r \operatorname{Der}(\mathcal{A}_i)$ as Lie algebras and $\mathcal{Z}(\mathcal{A})$ -modules.
 - ▶ $a = \bigoplus_{i=1}^{r} a_i \in \mathcal{A} \text{ and } \mathfrak{X} = \bigoplus_{i=1}^{r} \mathfrak{X}_i \in \text{Der}(\mathcal{A}) \Longrightarrow \mathfrak{X}(a) = \bigoplus_{i=1}^{r} \mathfrak{X}_i(a_i)$
 - ▶ If $Der(A_i) = Int(A_i)$ for any i = 1, ..., r, then $Der(A) = Int(A) = \bigoplus_{i=1}^r Int(A_i)$.
- For any $p \ge 0$, $\Omega_{\mathrm{Der}}^p(\mathcal{A}) = \bigoplus_{i=1}^r \Omega_{\mathrm{Der}}^p(\mathcal{A}_i)$.
 - $\bullet \ \omega \in \Omega^p_{\mathrm{Der}}(\mathcal{A})$ decomposes as $\omega = \bigoplus_{i=1}^r \omega_i$ with $\omega_i \in \Omega^p_{\mathrm{Der}}(\mathcal{A}_i)$.
 - $\bullet \ \omega(\mathfrak{X}_1,\ldots,\mathfrak{X}_p) = \bigoplus_{i=1}^r \omega_i(\mathfrak{X}_{1,i},\ldots,\mathfrak{X}_{p,i}) \text{ for any } \mathfrak{X}_k = \bigoplus_{i=1}^r \mathfrak{X}_{k,i} \in \mathrm{Der}(\mathcal{A}).$
- d on $\Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A})$ decomposes along the d_i on $\Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A}_i)$: $d\omega = \bigoplus_{i=1}^r d_i\omega_i$

Derivation-based NCG: $A = \bigoplus_{i=1}^{n} A_i$

- \mathcal{M} left modules on \mathcal{A} such that $\mathcal{M} = \bigoplus_{i=1}^r \mathcal{M}_i$ where \mathcal{M}_i is a left module on \mathcal{A}_i .
- ∇ connection on \mathcal{M} .
 - ▶ There is a unique family of connections ∇^i on the left \mathcal{A}_i modules \mathcal{M}_i s.t. $\nabla_{\mathfrak{X}} e = \bigoplus_{i=1}^r \nabla^i_{\mathfrak{X}_i} e_i$. $e = \bigoplus_{i=1}^r e_i \in \mathcal{M}$ and $\mathfrak{X} = \bigoplus_{i=1}^r \mathfrak{X}_i \in \mathrm{Der}(\mathcal{A})$
 - ▶ R_i the curvature associated to ∇^i , then $R(\mathfrak{X},\mathfrak{Y})e = \bigoplus_{i=1}^r R_i(\mathfrak{X}_i,\mathfrak{Y}_i)e_i$. $\mathfrak{Y} = \bigoplus_{i=1}^r \mathfrak{Y}_i \in \operatorname{Der}(\mathcal{A})$
- Case $\mathcal{M} = \mathcal{A}$. Then with $\nabla \rightarrow \omega \in \Omega^1_{\mathrm{Der}}(\mathcal{A})$ and $\nabla^i \rightarrow \omega_i \in \Omega^1_{\mathrm{Der}}(\mathcal{A}_i)$.
 - $\bullet \ \omega = \bigoplus_{i=1}^r \omega_i$

Derivation-based NCGFT: $A = \bigoplus_{i=1}^{n} M_{n_i}$

Let $\mathcal{A} = \bigoplus_{i=1}^n M_{n_i}$.

- $\mathbb{Z}(\mathcal{A}) = \bigoplus_{i=1}^r \mathbb{C}.$
- $Der(A) = Int(A) \simeq \bigoplus_{i=1}^{r} \mathfrak{sl}_{n_i}$
- $\blacksquare \{E_{\alpha}^i\}_{\alpha \in I_i}$ basis (anti-Hermitean matrices) of \mathfrak{sl}_{n_i} where I_i is a totally ordered set of cardinal $n_i^2 1$.
- $g(\partial_{\alpha}^{i}, \partial_{\alpha'}^{i'}) = 0 \text{ for } i \neq i' \text{ and } g_{\alpha\alpha'}^{i} := g(\partial_{\alpha}^{i}, \partial_{\alpha'}^{i}) = \operatorname{tr}(E_{\alpha}^{i} E_{\alpha'}^{i}).$
- Then for $\omega = \bigoplus_{i=1}^{r} \omega_i$ and $\omega' = \bigoplus_{i=1}^{r} \omega_i' \in \Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A}), \ \omega \wedge \star \omega' = \sum_{i=1}^{r} \omega_i \wedge \star_i \omega_i' \ (\star_i \text{ defined on } \Omega_{\mathrm{Der}}^{\bullet}(M_{n_i})).$
- \rightarrow All the structures to define a NCGFT_A "decompose along i"...

Similar structures to define $\text{NCGFT}_{\widehat{\mathcal{A}}}$ in a natural way $(\widehat{\mathcal{A}} = C^{\infty}(M) \otimes (\bigoplus_{i=1}^{r} M_{n_i}))...$

This NCGFT \widehat{A} requires (almost) no choice (once $\mathcal{M} = \widehat{A}$).

 \rightarrow define compatibilities between modules and derivations along the defining sequence of an AF-algebra...

Spectral triples and spectral action

- (A, \mathcal{H}, D) spectral triple, $\pi : A \to \mathcal{B}(\mathcal{H})$ the representation on the Hilbert space \mathcal{H} .
- Even spectral triple $(\mathcal{A}, \mathcal{H}, D, \gamma)$: γ a \mathbb{Z}_2 -grading on \mathcal{H} , $\gamma^{\dagger} = \gamma$, $\gamma^2 = 1$, $\gamma D + D \gamma = 0$ (D is odd), $\gamma \pi(a) = \pi(a) \gamma$ for any $a \in \mathcal{A}$.
- Real spectral triple (A, \mathcal{H}, D, J) : J anti-unitary operator, $\langle J\psi_1, J\psi_2 \rangle = \langle \psi_2, \psi_1 \rangle$,
 - $[a, Jb^*J^{-1}] = 0$ (commutant property) and $[[D, a], Jb^*J^{-1}] = 0$ (first-order condition).
 - $\blacktriangleright \mathcal{H}$ bimodule for $a^{\circ}\psi = Ja^{*}J^{-1}\psi = \psi a$ (a° element in the opposite algebra \mathcal{A}°).
- KO-dimension $n \mod 8$ depends on $\epsilon, \epsilon', \epsilon'' = \pm 1$: $J^2 = \epsilon, JD = \epsilon'DJ$, and $J\gamma = \epsilon''\gamma J$.
- $u \in \mathcal{U}(A)$ defines the unitary $U = \pi(u)J\pi(u)J^{-1} : \mathcal{H} \to \mathcal{H}$.
 - ▶ D modified as $D^u = D + \pi(u)[D, \pi(u)^*] + \epsilon' J(\pi(u)[D, \pi(u)^*])J^{-1}$.
 - ▶ $\omega \in \Omega^1_U(\mathcal{A})$ (universal differential calculus) $\Longrightarrow D_\omega := D + \pi_D(\omega) + \epsilon' J \pi_D(\omega) J^{-1}$ with $\pi_D(a^0 \mathbf{d}_U a^1) := \pi(a^0)[D, \pi(a^1)].$
- Action functional = Spectral action + Fermionic action associated to D_{ω} .

This NCGFT_{\mathcal{A}} requires some choices.

 \rightarrow define compatibilities for representations, Dirac, grading and real operators, 1-forms ω ...

- General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- 3 Derivation-based NCGFT on AF-algebras
- MCGFT based on spectral triples on AF-algebras
- 5 Derivation-based NCGFT: Numerical explorations of examples

AF-algebras

 $A = \varinjlim A_n$ with:

- A_n finite dimensional algebra.
- { $(A_n, \phi_{n,m}) / 0 \le n < m$ } where $\phi_{n,m} : A_n \to A_m$ are one-to-one *-homomorphisms.
- $\phi_{m,p} \circ \phi_{n,m} = \phi_{n,p}$ for any $0 \le n < m < p$
- **→** Need only consider "one step" in the sequence: $\phi_{n,n+1}: A_n \to A_{n+1}$.
- $\phi: \mathcal{A} = \bigoplus_{i=1}^r M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$ one-to-one.
- ϕ is determined up to unitary equivalence in \mathcal{B} by a $s \times r$ matrix $A = (\alpha_{ki})$.
- $\alpha_{ki} \in \mathbb{N}$ is the multiplicity of the inclusion of M_{n_i} into the diagonal of M_{m_k} .
 - → presentation as Bratteli diagrams...
- $\mathbf{I}_{\mathcal{A}}^{i}: M_{n_{i}} \hookrightarrow \mathcal{A} \text{ and } \pi_{k}^{\mathcal{B}}: \mathcal{B} \to M_{m_{k}} \text{ canonical inclusion and projection.}$

Decomposition of $\phi: \mathcal{A} = \bigoplus_{i=1}^n M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$

- \bullet ϕ is not necessary unital.
- ϕ is normalized such that, for any $a = \bigoplus_{i=1}^{r} a_i \in \mathcal{A}$,

$$\phi_{k}(a) := \pi_{k}^{\mathcal{B}} \circ \phi(a) = \begin{pmatrix} a_{1} \otimes \mathbb{1}_{\alpha_{k1}} & 0 & \cdots & 0 & 0 \\ 0 & a_{2} \otimes \mathbb{1}_{\alpha_{k2}} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{r} \otimes \mathbb{1}_{\alpha_{kr}} & 0 \\ 0 & 0 & \cdots & 0 & \mathbb{0}_{n_{0}} \end{pmatrix} \quad a_{i} \otimes \mathbb{1}_{\alpha_{ki}} = \begin{pmatrix} a_{i} & 0 & 0 & 0 \\ 0 & a_{i} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{i} \end{pmatrix}$$

 $\alpha_{ki} \geq 0$ is the multiplicity of the inclusion of M_{n_i} into M_{m_k} , $\mathbb{1}_{\alpha_{ki}}$ is the unit matrix of size α_{ki} , $\mathbb{1}_{\alpha_{0}}$ is the $n_0 \times n_0$ zero matrix such that $n_0 \geq 0$ satisfies $m_j = n_0 + \sum_{i=1}^r \alpha_{ki} n_i$.

- $\bullet \phi_k^i := \phi_k \circ \iota_{\mathcal{A}}^i : M_{n_i} \to M_{m_k}.$
- For $\alpha_{ki} > 0$ and $1 \le \ell \le \alpha_{ki}$, let $\phi_{k,\ell}^i : M_{n_i} \to M_{m_k}$ which inserts a_i at the ℓ -th entry on the diagonal of $\mathbb{1}_{\alpha_{ki}}$.
- For any $a_{i_1} \in M_{n_{i_1}}$, $b \in M_{n_{i_2}}$, any $1 \le i_1, i_2 \le r$, any $1 \le \ell_1 \le \alpha_{ki_1}$, any $1 \le \ell_2 \le \alpha_{ki_2}$, $\phi_{k,\ell}^{i_1}(a_{i_1})\phi_{k,\ell}^{i_2}(b_{i_2}) = \delta_{i_1,i_2}\delta_{\ell_1,\ell_2}\phi_{k,\ell}^{i_1}(a_{i_1}b_{i_1})$.

Requirements for a sequence of NCGFT on top of an AF-algebra

$$\phi: \mathcal{A} = \bigoplus_{i=1}^r M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$$
 one-to-one.

Consider a NCGFT_A and a NCGFT_B.

What do we require on these NCGFT to be ϕ -compatible (and so part of a sequence of NCGFT's)?

- lacktriangle Possibility to find in NCGFT $_{\mathcal{B}}$ the degrees of freedom (DOF) defined in NCGFT $_{\mathcal{A}}$.
 - ▶ Keep track of "gauge fields" and "particles" from \mathcal{A} to $\mathcal{B} \Longrightarrow$ "inherited DOF".
 - ▶ To be able to identify new DOF in NCGFT_B.
 - ▶ Similar to GUT where SSBM relate DOF in the opposite direction...
- **2** Possibility to compare the action (or Lagrangian) defined by $NCGFT_{\mathcal{B}}$ with the one defined by $NCGFT_{\mathcal{A}}$.
 - ▶ Since we track DOF, we want also to track the equations they satisfy...
 - ▶ Understand the mixing between new DOF and inherited ones.
- 3 Try to define these comparisons in a "natural way" in the chosen framework...

Module structures

$$\phi: \mathcal{A} = \bigoplus_{i=1}^r M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$$
 one-to-one.

- Both framework use left modules (promoted to bimodules for Real Spectral Triples). \mathcal{M} left module on \mathcal{A} and \mathcal{N} left module on \mathcal{B} .
- A one-to-one linear map $\phi_{\text{Mod}}: \mathcal{M} \to \mathcal{N}$ is ϕ -compatible iff

$$\phi_{\mathrm{Mod}}(ae) = \phi(a)\phi_{\mathrm{Mod}}(e)$$
 for any $a \in \mathcal{A}$ and $e \in \mathcal{M}$.

- Left modules on \mathcal{A} are $\mathcal{M} = \bigoplus_{i=1}^r \mathbb{C}^{n_i} \otimes \mathbb{C}^{\mu_i}$. Left modules on \mathcal{B} are $\mathcal{N} = \bigoplus_{k=1}^s \mathbb{C}^{m_k} \otimes \mathbb{C}^{\nu_k}$. μ_i = multiplicity of the irreducible representation of M_{n_i} on \mathbb{C}^{n_i} .
- Case $\mathcal{M} = \mathcal{A}$ and $\mathcal{N} = \mathcal{B}$: $\phi_{\text{Mod}} = \phi : \mathcal{M} \to \mathcal{N}$ is ϕ -compatible.
- General case: inject $\mathcal{M}_i := \mathbb{C}^{n_i} \otimes \mathbb{C}^{\alpha_i} \ \alpha_{ki}$ times (as rows) into $\mathcal{N}_k := \mathbb{C}^{m_k} \otimes \mathbb{C}^{\beta_k}$ (when $\alpha_{ki} > 0$).
 - β_k must be large enough to accept the largest α_i .
 - ϕ_{Mod} decomposes as $\phi_{\text{Mod},k}^i := \pi_k^{\mathcal{N}} \circ \phi_{\text{Mod}} \circ \iota_{\mathcal{M}}^i : \mathcal{M}_i \to \mathcal{N}_k$
 - ▶ For any $1 \le \ell \le \alpha_{ki}$, let $\phi_{\text{Mod},k,\ell}^i : \mathcal{M}_i \to \mathcal{N}_k$ which inserts $e_i \in \mathcal{M}_i$ at the ℓ -th row.

Operators on Hilbert spaces (Spectral triples case)

- $\phi: \mathcal{A} \to \mathcal{B}$ one-to-one, represented on Hilbert spaces $\mathcal{H}_{\mathcal{A}}$ and $\mathcal{H}_{\mathcal{B}}$ by $\pi_{\mathcal{A}}$ and $\pi_{\mathcal{B}}$.
- $\bullet \phi_{\mathcal{H}}: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}_{\mathcal{B}} \text{ is } \phi\text{-compatible iff } \phi_{\mathcal{H}}(a\psi) = \phi(a)\phi_{\mathcal{H}}(\psi) \text{ for any } a \in \mathcal{A} \text{ and } \psi \in \mathcal{H}_{\mathcal{A}}.$
- Decompose $\mathcal{H}_{\mathcal{B}} = \phi_{\mathcal{H}}(\mathcal{H}_{\mathcal{A}}) \oplus \phi_{\mathcal{H}}(\mathcal{H}_{\mathcal{A}})^{\perp}$ (in a $\phi_{\mathcal{H}}$ -dependent way).
- Any operator B on $\mathcal{H}_{\mathcal{B}}$ decomposes as $B = \begin{pmatrix} B_{\phi}^{\phi} & B_{\phi}^{\perp} \\ B_{\perp}^{\phi} & B_{\perp}^{\perp} \end{pmatrix}$ (obvious notations).
- Consider two operators A on $\mathcal{H}_{\mathcal{A}}$ and B on $\mathcal{H}_{\mathcal{B}}$.
 - ▶ They are ϕ -compatible iff $\phi_{\mathcal{H}}(A\psi) = B^{\phi}_{\phi}\phi_{\mathcal{H}}(\psi)$ for any $\psi \in \mathcal{H}_{\mathcal{A}}$ (equality in $\phi_{\mathcal{H}}(\mathcal{H}_{\mathcal{A}})$).
 - ▶ They are strong ϕ -compatible iff $\phi_{\mathcal{H}}(A\psi) = B\phi_{\mathcal{H}}(\psi)$ for any $\psi \in \mathcal{H}_{\mathcal{A}}$ (equality in $\mathcal{H}_{\mathcal{B}}$).
- Strong ϕ -compatibility implies ϕ -compatibility.
- Results on the behavior of (strong) ϕ -compatibility under many operations on operators: sum, composition, adjointness...
- $\pi_{\mathcal{A}}(a)$ and $\pi_{\mathcal{B}}(\phi(a))$ are strong ϕ -compatible for any $a \in \mathcal{A}$ and $\pi_{\mathcal{B}}(\phi(a))$ is diagonal.

Bimodule structures (Spectral triples case)

$$\phi: \mathcal{A} = \bigoplus_{i=1}^r M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$$
 one-to-one.

- \mathcal{A}° and \mathcal{B}° the opposite algebras of \mathcal{A} and \mathcal{B} . Then $\phi^{\circ}: \mathcal{A}^{\circ} \to \mathcal{B}^{\circ}$ defined by $\phi^{\circ}(a^{\circ}) := \phi(a)^{\circ}$ is a morphism of algebras.
- $\mathcal{A}^e := \mathcal{A} \otimes \mathcal{A}^\circ$ and $\mathcal{B}^e := \mathcal{B} \otimes \mathcal{B}^\circ$ the so-called envelopping algebras of \mathcal{A} and \mathcal{B} . Then $\phi^e := \phi \otimes \phi^\circ : \mathcal{A}^e \to \mathcal{B}^e$ is a morphism of algebras.
- Bimodule on \mathcal{A} = left module on \mathcal{A}^e .
- Bimodules on \mathcal{A} are $\mathcal{M} = \bigoplus_{i,j=1}^r \mathbb{C}^{n_i} \otimes \mathbb{C}^{\mu_{ij}} \otimes \mathbb{C}^{n_j \circ}$. Bimodules on \mathcal{B} are $\mathcal{N} = \bigoplus_{k,\ell=1}^s \mathbb{C}^{m_k} \otimes \mathbb{C}^{v_{k\ell}} \mathbb{C}^{m_{\ell} \circ}$. μ_{ij} is the multiplicity of the irreducible representation of $M_{n_i} \otimes M_{n_j}^{\circ}$ on $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j \circ}$ ($\mathbb{C}^{n_j \circ}$ are row vectors on which M_{n_i} acts on the right)
- A one-to-one linear map $\phi_{\text{Mod}}: \mathcal{M} \to \mathcal{N}$ between two \mathcal{A} and \mathcal{B} bimodules is ϕ -compatible iff ϕ_{Mod} is ϕ^e -compatible between the corresponding \mathcal{A}^e and \mathcal{B}^e left modules.
- For Real Spectral Triples, bimodule structures on $\mathcal{H}_{\mathcal{A}}$ and $\mathcal{H}_{\mathcal{B}}$ are defined by $J_{\mathcal{A}}$ and $J_{\mathcal{B}}$.
 - ▶ Suppose $\phi_{\mathcal{H}}: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}_{\mathcal{B}}$ is ϕ -compatible (left module definition).
 - ▶ Then $\phi_{\mathcal{H}}$ is ϕ^e -compatible if and only if $J_{\mathcal{A}}$ and $J_{\mathcal{B}}$ are strong ϕ -compatible.
 - \rightarrow Suggest to always consider strong ϕ -compatibility between J_A and J_B ...

- General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- 3 Derivation-based NCGFT on AF-algebras
- MCGFT based on spectral triples on AF-algebras
- 5 Derivation-based NCGFT: Numerical explorations of examples

ϕ -compatibility and derivations

- \bullet ϕ does not relate the centers of \mathcal{A} and $\mathcal{B} \longrightarrow$ no "general" map to inject $Der(\mathcal{A})$ into $Der(\mathcal{B})$...
- Strategy: **keep track of the derivations in** Der(B) **which "come from" derivations in** Der(A). (These derivations will propagate along the sequence and new derivations will be introduced at each step)
- For any i = 1, ..., r, let $\{\partial_{\mathcal{A}, \alpha}^i := \operatorname{ad}_{E_{\mathcal{A}, \alpha}^i}\}_{\alpha \in I_i}$ be an basis of $\operatorname{Der}(\mathcal{A}_i) = \operatorname{Int}(M_{n_i})$. $E_{\mathcal{A}_{\alpha}}^i \in \mathfrak{sl}_{n_i}$ and I_i is a totally ordered set of cardinal $n_i^2 - 1$.
- For any k = 1, ..., s, introduce a basis of $Der(\mathcal{B}_k) = Int(M_{m_k})$ in two steps:
- **1** Let $J_{i}^{\phi} := \{(i, \ell, \alpha) \mid i \in \{1, \dots, r\}, \ell \in \{1, \dots, \alpha_{ki}\}, \alpha \in I_{i}\}.$ J_{i}^{ϕ} has a (natural) total order.
 - ▶ For any $\beta = (i, \ell, \alpha) \in J_k^{\phi}$, define $E_{\mathcal{B}, \beta}^k := \phi_{k, \ell}^i(E_{\mathcal{A}, \alpha}^i) \in \mathfrak{sl}_{m_k}$ and $\partial_{\mathcal{B}, \beta}^k := \operatorname{ad}_{E_{\mathcal{B}, \beta}^k} \in \operatorname{Der}(\mathcal{B}_k)$, inherited derivations.
 - ▶ $g_{\mathcal{A}}$ and $g_{\mathcal{B}}$ the metrics on \mathcal{A} and \mathcal{B} as before, for any $\beta = (i, \ell, \alpha)$ and $\beta' = (i', \ell', \alpha')$, one has $g_{\mathcal{B}, \beta \beta'}^k = \delta_{ii'} \delta_{\ell \ell'} g_{\mathcal{A}, \alpha \alpha'}^i$. (reason for the change of normalization...)
- **2** Complete the family $\{\partial_{\mathcal{B},\beta}^k\}_{\beta\in I^{\phi}}$ into a full basis $\{\partial_{\mathcal{B},\beta}^k\}_{\beta\in J_k}$ of $\mathrm{Der}(\mathcal{B}_k)$.
 - $J_k = J_k^{\phi} \cup J_k^c$ where J_k^c is a complementary (total ordered) set to get card $(J_k) = m_k^2 1$.
 - ▶ Require $g_{\mathcal{B}}(\partial_{\mathcal{B},\beta}^k,\partial_{\mathcal{B},\beta'}^k) = 0$ for any $\beta \in J_k^{\phi}$ and $\beta' \in J_k^c$.
 - $\rightarrow g_{\mathcal{B}}$ is block diagonal and decomposes $\operatorname{Der}(\mathcal{B}_j)$ into two orthogonal summands (inherited *vs* new derivations).

ϕ -compatibility and derivations

- The previous construction can start with an orthogonal basis of \mathcal{A} and end with an orthogonal basis of \mathcal{B} .
- Same for orthonormal basis...
- Let $1 \le j \le s$, $1 \le i, i' \le r$, $1 \le \ell \le \alpha_{ki}$, $1 \le \ell' \le \alpha_{ki'}$, $\alpha \in I_i$, $\alpha' \in I_{i'}$, $\alpha_{i'} \in \mathcal{A}_{i'}$, one has

$$\begin{split} & \partial^k_{\mathcal{B},(i,\ell,\alpha)} \cdot \phi^{i'}_{k,\ell'}(a_{i'}) = \phi^i_{k,\ell}(\partial^i_{\mathcal{A},\alpha}) \cdot \phi^{i'}_{k,\ell'}(a_{i'}) = \delta_{i,i'} \delta_{\ell,\ell'} \phi^i_{k,\ell}(\partial^i_{\mathcal{A},\alpha} \cdot a_{i'}) \\ & [\partial^k_{\mathcal{B},(i,\ell,\alpha)}, \partial^k_{\mathcal{B},(i',\ell',\alpha')}] = [\phi^i_{k,\ell}(\partial^i_{\mathcal{A},\alpha}), \phi^{i'}_{k,\ell'}(\partial^{i'}_{\mathcal{A},\alpha'})] = \delta_{i,i'} \delta_{\ell,\ell'} \phi^i_{k,\ell}([\partial^i_{\mathcal{A},\alpha}, \partial^i_{\mathcal{A},\alpha'}]) \end{split}$$

 \rightarrow ϕ -compatibility of the Lie structures on inherited derivations...

ϕ -compatibility and forms

■ A form $\omega = \bigoplus_{i=1}^{r} \omega_i \in \Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A})$ is ϕ -compatible with a form $\eta = \bigoplus_{k=1}^{s} \eta_k \in \Omega_{\mathrm{Der}}^{\bullet}(\mathcal{B})$ iff for any $1 \leq i \leq r$, $1 \leq k \leq s$, $1 \leq \ell \leq \alpha_{ki}$, ω_i and η_k have the same degree p and for any $\partial_{\mathcal{A},\alpha_1}^i, \ldots, \partial_{\mathcal{A},\alpha_p}^i \in \mathrm{Der}(\mathcal{A}_i)$ ($\alpha_q \in I_i$), one has

$$\phi_{k,\ell}^i \left(\omega_i(\partial_{\mathcal{A},\alpha_1}^i, \dots, \partial_{\mathcal{A},\alpha_p}^i) \right) = \eta_k \left(\phi_{k,\ell}^i(\partial_{\mathcal{A},\alpha_1}^i), \dots, \phi_{k,\ell}^i(\partial_{\mathcal{A},\alpha_p}^i) \right)$$

- ullet ϕ -compatibility of forms is compatible with products and differentials.
- \bullet ϕ -compatibility for 1-forms.
 - Let $\omega = \bigoplus_{i=1}^r \omega_\alpha^i \otimes \theta_{\mathcal{A},i}^\alpha$ for $\omega_\alpha^i \in \mathcal{A}_i$ and $\eta = \bigoplus_{k=1}^s \eta_\beta^k \otimes \theta_{\mathcal{B},k}^\beta$ for $\eta_\beta^k \in \mathcal{B}_k$.
 - ω and η ϕ -compatible then $\phi^i_{k,\ell}(\omega^i_\alpha) = \eta^k_{(i,\ell,\alpha)}$.
 - The components η^k_{β} of η in the "inherited directions" $\phi^i_{k,\ell}(\partial^i_{\mathcal{A},\alpha})$'s are inherited from components in ω .
 - ▶ Control on the inherited degrees of freedom for forms, and so for (NC) connections...

ϕ -compatibility and connections

- A-module \mathcal{M} and a \mathcal{B} -module \mathcal{N} with one-to-one ϕ -compatible map $\phi_{\text{Mod}}: \mathcal{M} \to \mathcal{N}$.
- lacksquare $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{N}}$ are ϕ -compatible iff, for any $1 \leq i \leq r, 1 \leq k \leq s, 1 \leq \ell \leq \alpha_{ki}, \alpha \in I_i$, one has

$$\phi_{\mathrm{Mod},k,\ell}^{i}\left(\nabla_{\mathcal{A}_{\mathcal{A},\alpha}^{i}}^{\mathcal{M},i}e_{i}\right) = \nabla_{\phi_{k,\ell}^{i}(\mathcal{A}_{\mathcal{A},\alpha}^{i})}^{\mathcal{N},k}\phi_{\mathrm{Mod},k,\ell}^{i}(e_{i}).$$

- Case $\mathcal{M} = \mathcal{A}$ and $\mathcal{N} = \mathcal{B}$. Introduce the connection 1-forms $\omega_{\mathcal{M}}$ and $\omega_{\mathcal{N}}$ for $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{N}}$. If $\omega_{\mathcal{M}}$ and $\omega_{\mathcal{N}}$ are ϕ -compatible, then $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{N}}$ are ϕ -compatible.
 - ⚠ The opposite result is false...

ϕ -compatibility and Lagrangians

What about Lagrangians?

- Consider $\mathcal{A} = \bigoplus_{i=1}^r M_{n_i}$ and $\mathcal{B} = M_m$.
- Suppose that $\phi : \mathcal{A} \to \mathcal{B}$ includes α_i times M_{n_i} on the diagonal of M_m .
- Let $\omega = \bigoplus_{i=1}^r \omega_i \in \Omega_{\mathrm{Der}}^{\bullet}(\mathcal{A})$ and $\eta \in \Omega_{\mathrm{Der}}^{\bullet}(\mathcal{B})$ be ϕ -compatible.
- Suppose η vanishes on every derivation $\partial_{\mathcal{B},\beta}$ with $\beta \in J^c$. Then

$$\int_{\mathcal{B}} \eta \wedge \star_{\mathcal{B}} \eta = \sum_{i=1}^{r} \alpha_{i} \int_{i} \omega_{i} \wedge \star_{i} \omega_{i}$$

- The Lagrangian on \mathcal{B} decomposes along 3 kinds of terms: "inherited" + "inherited + new" + "new".
- "inherited" = all the terms (with possible weights) of the Lagrangian on A.

Sequence of NCGFT

- Consider a sequence of finite dimensional algebras $\mathcal{A} = \bigoplus_{i=1}^r M_{n_i}$ (defining an AF-algebra).
- Consider the sequence of almost commutative algebras $\widehat{A} = C^{\infty}(M) \otimes A$ (M is fixed).
 - One can extend $\phi: \mathcal{A} \to \mathcal{B}$ to $\hat{\phi}: \widehat{\mathcal{A}} \to \widehat{\mathcal{B}}$.
 - One can extend all the definitions of ϕ -compatibility to $\hat{\phi}$ -compatibility.
 - $\longrightarrow C^{\infty}(M)$ is quite "passive" in this extension...
- Construct a sequence of $\hat{\phi}$ -compatible NCGFT $_{\widehat{\mathcal{A}}}$.
- lacksquare One can follow the degrees of freedom from $\mathrm{NCGFT}_{\widehat{\mathcal{A}}}$ to $\mathrm{NCGFT}_{\widehat{\mathcal{B}}}$.
- The Lagrangian in NCGFT $_{\widehat{\mathcal{B}}}$ contains weighted terms of the Lagrangian in NCGFT $_{\widehat{\mathcal{A}}}$.
- Gauge transformations in NCGFT $_{\widehat{\mathcal{A}}}$ and NCGFT $_{\widehat{\mathcal{B}}}$ are also $\hat{\phi}$ -compatible...

- General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- 3 Derivation-based NCGFT on AF-algebras
- 4 NCGFT based on spectral triples on AF-algebras
- 5 Derivation-based NCGFT: Numerical explorations of examples

ϕ -compatibility of spectral triples

Let $\phi: \mathcal{A} \to \mathcal{B}$ be one-to-one and $\phi_{\mathcal{H}}: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}_{\mathcal{B}}$ be a ϕ -compatible map.

 $\mathcal A$ and $\mathcal B$ finite dimensional \Longrightarrow ignore analytical properties...

(see Floricel, R. and Ghorbanpour, A. (2019). On inductive limit spectral triples. *Proceedings of the American Mathematical Society* 147.8, pp. 3611–3619)

- Two odd spectral triples $(\mathcal{A}, \mathcal{H}_{\mathcal{A}}, D_{\mathcal{A}})$ and $(\mathcal{B}, \mathcal{H}_{\mathcal{B}}, D_{\mathcal{B}})$ are ϕ -compatible iff $D_{\mathcal{A}}$ is ϕ -compatible with $D_{\mathcal{B}}$.
- Two real spectral triples $(A, \mathcal{H}_A, D_A, J_A)$ and $(B, \mathcal{H}_B, D_B, J_B)$ are ϕ -compatible iff D_A (resp. J_A) is ϕ -compatible with D_B (resp. J_B).
- Two even spectral triples $(A, \mathcal{H}_A, D_A, \gamma_A)$ and $(B, \mathcal{H}_B, D_B, \gamma_B)$ are ϕ -compatible iff D_A (resp. γ_A) is ϕ -compatible with D_B (resp. γ_B).
- Strong ϕ -compatibility of spectral triples can be defined in an similar way.
- If two (odd/even) real spectral triples are strong ϕ -compatible, then they have the same KO-dimension (mod 8).
- If two (odd/even) real spectral triples are ϕ -compatible and J_A and J_B are strong ϕ -compatible, then they have the same KO-dimension (mod 8).

Sequence of NCGFT constructed on spectral triples

- Suppose that $D_{\mathcal{B}}$ is ϕ -compatible with $D_{\mathcal{A}}$.
- **1** For any $\omega \in \Omega^1_U(\mathcal{A})$, $\pi_{D_{\mathcal{B}}} \circ \phi(\omega)$ is ϕ -compatible with $\pi_{D_{\mathcal{A}}}(\omega)$.
- ② Suppose that $J_{\mathcal{B}}$ is strong ϕ -compatible with $J_{\mathcal{A}}$. For any unitaries $u_{\mathcal{A}} \in \mathcal{A}$ and $u_{\mathcal{B}} \in \mathcal{B}$ such that $\pi_{\mathcal{A}}(u_{\mathcal{A}})$ and $\pi_{\mathcal{B}}(u_{\mathcal{B}})$ are ϕ -compatible and $\pi_{\mathcal{B}}(u_{\mathcal{B}})$ is diagonal in the matrix decomposition, $D_{\mathcal{B}}^{u_{\mathcal{B}}}$ is ϕ -compatible with $D_{\mathcal{A}}^{u_{\mathcal{A}}}$.
- 3 Using the hypothesis of the previous points, $D_{\mathcal{B},\phi(\omega)}^{u_{\mathcal{B}}}$ is ϕ -compatible with $D_{\mathcal{A},\omega}^{u_{\mathcal{A}}}$.
- Similar result for strong ϕ -compatibility...
- We have all the tools to define sequences of NCGFT on spectral triples...
- Case $\phi: \mathcal{A} = \bigoplus_{i=1}^n M_{n_i} \to \mathcal{B} = \bigoplus_{k=1}^s M_{m_k}$
 - ▶ Spectral triples are classified (described) by Krajewski diagrams.
 - (strong) ϕ -compatibility is then implemented between Krajewski diagrams.
 - Gaston Nieuviarts will describe this situation in his talk.

- General considerations on NCGFT
- 2 NCGFT associated to AF-algebras
- 3 Derivation-based NCGFT on AF-algebras
- 4 NCGFT based on spectral triples on AF-algebras
- 5 Derivation-based NCGFT: Numerical explorations of examples

General considerations

$$\mathcal{A} = \bigoplus_{i=1}^r M_{n_i}, \quad \widehat{\mathcal{A}} := C^{\infty}(M) \otimes \mathcal{A} = \bigoplus_{i=1}^r C^{\infty}(M) \otimes M_{n_i}, \quad \mathcal{M} = \widehat{\mathcal{A}}.$$

- Connection 1-form: $\omega = \bigoplus_{i=1}^{r} \omega_i$ with $\omega_i = A_{\mathcal{A},\mu}^i \mathrm{d} x^\mu + (E_{\mathcal{A},\alpha}^i B_{\mathcal{A},\alpha}^i) \theta_{\mathcal{A},i}^\alpha$
- $\begin{array}{l} \bullet \text{ Curvature: } \Omega_{i} = \frac{1}{2} \Omega_{\mu_{1}\mu_{2}}^{i} \mathrm{d}x^{\mu_{1}} \wedge \mathrm{d}x^{\mu_{2}} + \Omega_{\mu\alpha}^{i} \mathrm{d}x^{\mu} \wedge \theta_{\mathcal{A},i}^{\alpha} + \frac{1}{2} \Omega_{\alpha_{1}\alpha_{2}}^{i} \theta_{\mathcal{A},i}^{\alpha_{1}} \wedge \theta_{\mathcal{A},i}^{\alpha_{2}} \text{ with } \\ \Omega_{\mu_{1}\mu_{2}}^{i} = \partial_{\mu_{1}} A_{\mathcal{A},\mu_{2}}^{i} \partial_{\mu_{2}} A_{\mathcal{A},\mu_{1}}^{i} [A_{\mathcal{A},\mu_{1}}^{i}, A_{\mathcal{A},\mu_{2}}^{i}], \qquad \qquad \Omega_{\mu\alpha}^{i} = -(\partial_{\mu} B_{\mathcal{A},\alpha}^{i} [A_{\mathcal{A},\mu}^{i}, B_{\mathcal{A},\alpha}^{i}]), \\ \Omega_{\alpha_{1}\alpha_{2}}^{i} = -([B_{\mathcal{A},\alpha_{1}}^{i}, B_{\mathcal{A},\alpha_{2}}^{i}] C(n_{i})_{\alpha_{1}\alpha_{2}}^{\alpha_{3}} B_{\mathcal{A},\alpha_{3}}^{i}). \end{array}$
- $\blacksquare \text{ Action: } S = -\sum_{i=1}^r \int_M \left(\tfrac{1}{2} \operatorname{tr}(\Omega^i_{\mu_1 \mu_2} \Omega^{i, \mu_1 \mu_2}) + \operatorname{tr}(\Omega^i_{\mu \alpha} \Omega^{i, \mu \alpha}) + \tfrac{1}{2} \operatorname{tr}(\Omega^i_{\alpha_1 \alpha_2} \Omega^{i, \alpha_1 \alpha_2}) \right) \sqrt{|g_M|} \mathrm{d}x$
- Similar for $\mathcal{B} = \bigoplus_{k=1}^{s} M_{m_k}$ and assume $\hat{\phi}$ -compatibility between connection 1-forms on $\widehat{\mathcal{A}}$ and $\widehat{\mathcal{B}}$.
- \blacksquare Numerical explorations of the masses generated by the SSBM and constrained by $\hat{\phi}\text{-compatibility}:$
 - ▶ Fix the DOF in $B_{\mathcal{A},\alpha}^i = B_{\mathcal{A},\alpha}^{i,\alpha'} E_{\mathcal{A},\alpha'}^i + i B_{\mathcal{A},\alpha}^{i,0} \mathbb{1}_{n_i} \longrightarrow$ fixes masses for the gauge fields $A_{\mathcal{A},\mu}^{i,\alpha}$
 - $\hat{\phi}$ -compatibility \longrightarrow transports these DOF into $B_{\mathcal{B},\beta}^j = B_{\mathcal{B},\beta}^{j,\beta'} E_{\mathcal{B},\beta'}^j + i B_{\mathcal{B},\beta}^{j,0} \mathbb{1}_{m_i}$ (inherited DOF).
 - ▶ SSBM on $\widehat{\mathcal{B}}$ → fixes new DOF in $B^j_{\mathcal{B},\beta}$ with the constraints on the inherited DOF → fixes masses for the $A^{j,\beta}_{\mathcal{B},\mu}$
 - How the masses of the $A_{\mathcal{B},\mu}^{j,\beta}$ are related to the masses of the $A_{\mathcal{A},\mu}^{i,\alpha}$ through the constraints imposed by ϕ ?

Numerical explorations

- The space of configuration for the $B_{A,\alpha}^i$ is very large...
- Two special configurations for the minimum:
- $oldsymbol{0}$ $B^i_{\mathcal{A},\alpha}=0$, "null configuration" \longrightarrow null masses for the $A^{i,\alpha}_{\mathcal{A},\mu}$.
- 2 $B_{\mathcal{A},\alpha}^i = E_{\mathcal{A},\alpha}^i$ "basis configuration" \longrightarrow masses $\sqrt{2n_i}$ for the $A_{\mathcal{A},\mu}^{i,\alpha}$.
- Reduce the number of parameters to the $\lambda_i \in [-1, 3]$ with $B_{\mathcal{A}, \alpha}^i = \lambda_i E_{\mathcal{A}, \alpha}^i$ (= interpolation for $\lambda_i \in [0, 1]$).
 - \rightarrow SSBM on $\widehat{\mathcal{B}}$ performed along the constraints induced by these configurations...
- Use MATHEMATICA.
- Numerical exploration for the cases: $M_2 \to M_3$, $M_2 \oplus M_2 \to M_4$, $M_2 \oplus M_2 \to M_5$, $M_2 \oplus M_3 \to M_5$.

$$M_2 \rightarrow M_3$$

- Mass spectrum is not continuous.
- Several branches with degeneracies 3 (inherited DOF from M_2), 4, 1 (\longrightarrow 8 = 3² 1).
- Masses are preserved for inherited DOF for λ_1 close to 0 (numerically).

$M_2 \oplus M_2 \rightarrow M_4$

- On the left: square $(\lambda_1, \lambda_2) \in [-1, 3]^2$ (along selected paths). On the right: diagonal $\lambda_1 = \lambda_2$.
- Degeneracies 3 (inherited DOF from M_2), 3 (inherited DOF from M_2), 8, 1 (\Longrightarrow 15 = $4^2 1$).
- Masses are preserved for inherited DOF for λ_1, λ_2 close to 0 (numerically).

$M_2 \oplus M_2 \rightarrow M_5$

- Larger discontinuity and different position.
- Degeneracies 3 (inherited DOF from M_2), 3 (inherited DOF from M_2), 8, 4, 4, 1, 1 (\Longrightarrow 24 = 5² 1).
- Masses are preserved for inherited DOF for λ_1, λ_2 close to 0 (numerically).

$M_2 \oplus M_3 \rightarrow M_5$

- Smaller discontinuity.
- Degeneracies 3 (inherited DOF from M_2), 8 (inherited DOF from M_3), 12, 1 (\Longrightarrow 24 = 5² 1).
- Masses are preserved for inherited DOF for λ_1, λ_2 close to 0 (numerically).

Comments on the numerical explorations...

- Rich typology of mass spectra.
- We can "follow" the inherited DOF; their masses are preserved near the null configuration.
- Phenomenology is different for
 - the new DOF which commute with inherited DOF,
 - the new DOF which do not commute with inherited DOF.
- Interesting to study the "conflictual situations" $B_{\mathcal{A},\alpha}^1 = 0$ and $B_{\mathcal{A},\alpha}^2 = E_{\mathcal{A},\alpha}^2$.
- Position of the first discontinuity related to the ratio "number new of DOF"/"number of inherited DOF".
- But this numerical study is based on strong simplifications: need more explorations...

Thank you for your attention