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NCG: the mathematical side

NCG is motivated by deep results on correspondences spaces <> algebras.

o Measurable spaces =» abelian von Neumann algebras.
o Topological spaces =» commutative C*-algebras.

@ Fact 1: some tools used to study these spaces have algebraic counterpart.

o Fact 2: these algebraic tools can be applied to NC algebras.

Main idea of NCG:
replace commutative algebras of functions
by NC algebras in an identified category.

@ Replace the geometric approach by an algebraic one.

@ Give new light on difficult problems:
=> foliations and quotient spaces (NC torus)...

o “Differentiability” has been investigated in the 1980’s (Connes).
=> Cyclic homology, Chern character, index theorems. ..

e NC “riemannian manifolds”: spectral triples.
=>» reconstruction theorem in 2008.
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NCG: the physical side

Physics in crisis:

Geometrical theories: general relativity, gauge field theories...
Algebraic theories: quantum mechanic, QFT...

How to unify them?

NCG is not a theory in physics.

NCG is a framework in which to think about new theories.
=> different conceptualisations, unification...

NCG has been constructed in relation to physics.
=>» NC gauge field theories, NC space-times, quantum groups...

Some NC topological invariants are been used to explained (partially) the
Quantum Hall Effect.

QFT on NC spaces =» new renormalizable non local models...
(¢* theories on Moyal space)

NCG gauge field theories contains naturally Higgs-like particles.
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Abelian on von Neuman algebras

Theorem (Dixmier, von Neumann algebras, 1981)

Let H be a complex Hilbert space, and Z an abelian von Neumann algebra in H. There
exists a locally compact space z, a positive measure v on z, with support z, and an
isometric isomorphism of the normed x-algebra Z onto the normed x-algebra L (z, v/).

=>» von Neumann algebras are “NC measurable spaces”.

@ Every von Neumann algebra on a separable Hilbert space is isomorphic to a
direct integral of factors.
(factor = von Neumann algebra with trivial center).

e NC integration (weights), NC probability theory (states).

@ Any locally compact group defines a von Neumann algebra (and a C*-algebra).
abelian group =>» abelian von Neumann (C*-) algebra.
=>» Fourier transformation (Pontryagin dual gr.).
=>» NC harmonic analysis...

e Tomita-Takesaki theory of von Neumann algebra:

=>» extends to von Neumann algebra the non-modularity of groups;
=> relation to KMS states in statistical physics.
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Commutative C*-algebras

Theorem (Gelfand-Naimark)

The category of locally compact Hausdorff spaces is anti-equivalent to the category of
commutative C*-algebras.

Space X < algebra of continuous functions Co(X) vanishing at infinity.

This leads to the correspondences:

Spaces Algebras
point irreducible representation
compact unital
1-point compactification unitarization
Stone-Cech compactification multiplier algebra
homeomorphism automorphism
Borel measure positive functional

probability measure state
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Finite projective modules

Theorem (Serre-Swan)

The category of complex vector bundles on a compact Hausdorff space X is equivalent to
the category of finite projective modules over the algebra C(X) (continuous functions).

Vector bundle E <> Space of continuous sections '(E).
=>» projection in some My(C(X)).

This works also in the category of smooth manifolds.

@ Notion of “vector bundles” in NCG: finite projective modules over A.

@ Covariant derivatives have a NC generalisation (explained later).
=> This permits to define NC gauge field theories.
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Origin of common NC spaces
NC spaces are in general defined as von Neumann algebras or C*-algebras.

Many constructions can give very interesting examples:

Deformation: the idea is to deform a commutative algebra (4 extra structure...).
=> Moyal algebra, related to the canonical commutation relations in QM.
=>» r-Minkowski space, (co)-representation space of a quantum group.

Group algebras: any locally compact group defines a C*-algebra.
=> Study of the representation theory of the group.
=> More generally: C*-algebra of a smooth groupoid.
Cross products: action of a locally compact group on a given algebra.
=>» Compatible with semidirect product of groups and C*-alg. of groups.
Quantum groups: Hopf algebra structures.
=> usually a deformation of the matrix entries of an ordinary group.
=>» representation theory, new “symmetries”...
Quotients by equivalence relation: general construction gives an algebra which
is Morita equivalent to the “expected” one if the quotient space is good enough.
Generators and relations: the algebra is directly defined by some elements.
=>» Compatible with C*-alg. of groups presented as generators and relations.
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K-theories

X a compact topological space:

e K°(X): Grothendieck group of the semigroup V(X) of isomorphic classes of
vector bundles over X.
(Reminder: Z is the Grothendieck group of the semigroup N...)

@ Definition extends to non compact spaces.
o K™"(X) = K°(X x R").

A a unital C*-algebra:

@ Ky(A): Grothendieck group of the semigroup V(A) of homotopy classes of
projections in My, (A) (finite proj. mod. on A).

@ Definition extends to non unital C*-algebras.

o Ky(A) = K(Go(R™, A)).

Gelfand-Naimark + Serre-Swan theorems =» K~"(X) = K,(Co(X)).

The topological invariants detected by K-groups are the same.
=>» K-groups of C*-algebras are more general.
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K-theories (cont’d)

e K-theory of C*-algebras works for noncommutative algebras.
=> Essential tool to study NC spaces in NCG.

o K-theory of Fréchet, pre-C*, or Banach algebras is well defined.
=> K-groups of a C*-algebra can be computed using a dense subalgebra.
(stable by holomorphic functional calculus)

A a unital associative algebra:

o Algebraic K-theory: Kf,"g(A), v = 0, 1, for associative algebra without topology.
(Projectors in Moo (A) (p ~ u™'qu) and abelianization of GLo(A))

@ Definitions for higher degrees are very involved...

Other “K-theories”:

e K-homology, dual to K-theory.
=> Based on Fredholm operators on Hilbert spaces.

o KK-theory, contains K-theory and K-homology.
=> Based on Hilbert C*-modules = generalization of Hilbert spaces.
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K-theories: some properties
Theorem (Bott periodicity)

For any C*-algebra A, one has

=>» Only two K-groups: Ko(A) and K;(A).
Proposition (Six terms exact sequence)

For any short exact sequence of C*-algebras 0—=1—A—A/1—0,
one has the six terms exact sequence

Ko(1) —— Ko(A) —— Ko (A/1)
6T \L5
Ki(A/1) <— Ki(A) =<—— Kq(I)
=> § are index maps (as in Atiyah-Singer index theorem...).
Proposition (Algebraic K-theory)
A a C*-algebra: K™8(A) = Ky(A) and K™(A) — Ki(A) (not an isomorphism).

Worth mentioning Morita invariance also...
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Cyclic homology

A unital associative algebra.

Hochschild complex with values in A: A<2—... <2 A®n L pA@nt1 b
n—1
b(ao(g)...(g>an):2(71)%10®...®apap+1 R - ®a,
p=0

+(=1)"ana @ a1 ® - -+ @ ap—
Hochschild homology: HH,(A) homology of this complex.

t: A®" — A®" cyclic operator: t(a; @ - @ a,) = (=1)"a, @ a1 @ -+ @ ap_;.
b well-defined on C}(A) = A®"*1/Ran(1 — t).
Cyclic homology: HC,(A) homology of (C2(A), b).

Proposition (Connes long exact sequence)

There are morphisms | and S which induce the following long exact sequence

o HHy(A)—L = HCo(A)—2= HCp o (A)—2= HH,,_(A)—- -

For non unital algebras, need bicomplexes...
Cyclic cohomology is defined using Hochschild cohomology with values in A*.

=> similar operators / and S, and long exact sequence. N
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Periodic cyclic (co)homology
Periodic cyclic cohomology: HP*(A) is defined using S.
Only 2 groups: HP°(A) = lim HC?"(A) and HP'(A) = lim HC?>™1(A).
In the same way, one can define the periodic cyclic homology: HP,(A).

Proposition (Six terms exact sequence)

For any short exact sequence of associative algebras 0—=1—A—A/1—>0,
one has the six terms exact sequence

HPy(1) ——— HPy,(A) —— HPy(A/1)

5T \Lé

HP;(A/1) <—— HP;(A) <—— HPy(1)

Proposition (Diffeotopic invariance)

A and B two associative algebras. If o, p1 : A — B are diffeotopic, then they induce
the same morphism HP,(A) — HP,(B).

w:A—= B C™([0,1]) s.t. ¢ is o (resp. 1) at t = 0 (resp. t = 1)
=>» Does not work for homotopy!

Worth mentioning Morita invariance also...
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Cyclic homology: examples

Example A = C:
HHy(C) =C HH,(C) =0forn>1 HP,(C)=C HP,(C) =0
Example A = C[z, z~"] (Laurent polynomials):

HPy(C[z,z""]) = C HP,(Cl[z,z ") =C

Hochschild and cyclic homologies can be defined for topological algebras.

Example A = C(X), continuous functions on a compact space X:
HP$°™(C(X)) = {bounded measures on X} HPe™(C(X)) =0

M a finite dim. loc. compact manifold.
Example A = C°° (M), Fréchet algebra of smooth functions on M:

Theorem (Connes, 1985)
HHE™(C™°(M)) = Q&(M) (complexified de Rham forms)
HRE(CE(M) = HGEP(M)  HPE(C(M)) = HEge(m)

=>» Cyclic homology is the NC generalization of de Rham cohomology.
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The Chern character

Theorem (The (geometric) Chern character)

The (usual) Chern character ch(E) = troexp (%) realizes an isomorphism
ch : K°%(M) @z Q = H¥"(M; Q)

for locally compact finite dimensional (smooth) manifolds M.

It can be extended to an isomorphism ch : K'(M) ®z Q = H°%(M; Q).

Proposition (The (algebraic) Chern character)
The Chern character realizes a map ch : K&€(A) — HP,(A) forv =0, 1.

=> Defined by the generators of HPy(C) = C and HP,(C[z,z7"]) = C.
The algebraic Chern character factorizes through K-theory of topological algebras.

Theorem (The (NC) Chern character)
For a large class of Fréchet algebras, the Chern character realizes an isomorphism

ch: K,(A) ® C = HP,(A)

=>» The Fréchet algebras C°°(M) for locally compact manifolds M are in this class.

14
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Pairing and Fredholm modules
A a topological algebra (Fréchet, pre-C*, Banach).

@ We have introduced the Chern character as a map ch : K,(A) — HP,(A).
e It is also a pairing K, (A) x HPY(A) — C.
o Itis also a map K”(A) — HP”(A), where K”(A) is the K-homology of A.
Elements in K'(A) are classes of (odd) Fredholm modules (A, H, F);
‘H is a Hilbert space which supports an involutive representation 7 of A;
F is a bounded operator on H such that F = F*, 2=
[F,m(a)] is compact for any a € A;
then (Connes, 1985)
7(a,...,d") = Tr(d[F,d']---[F, d"])

defines an element in HP'(A).

o Need trace-class operators: “summability” of Fredholm modules.
=> Schatten ideals LP(H) = {T € B(H) / Tr(|T|") < oo}.
=> “Infinitesimals of order p in this quantum calculus” (Connes).

Remark

K-theory is a theory for NC topological spaces.
Periodic cyclic homology is a theory for algebras with “differentiable structures”.
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Spectral triples

Spectral triples are “unbounded Fredholm modules”.

A an involutive unital associative algebra.

Definition (Spectral triple)

A spectral triple on A is a triple (A, H, D) where
@ H is a Hilbert space on which an involutive representation p of A is given;
@ D is a (unbounded) self-adjoint operator on H;
@ the resolvant of D is compact;

[D, p(a)] is bounded for any a € A.

Many more axioms for complete description:
o Grading =» charge conjugaison in physics.
e Reality operator =» Tomita-Takesaki theory.

@ Regularity condition
=>» defines the “smooth” algebra A as a dense subalgebra of a C*-algebra
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Spectral triples (cont’d)

(A, H,D(1 + D?)~"/2) defines a Fredholm modules (except for F2 = 1):
o classin K¥(A);
o element in HP”(A) by the Chern character;
e Summability conditions on (A, #, D).
@ The operator D is called a Dirac operator.
=> This comes from (A, H, D) = (C>=(M), L%($), ) where
e M is a smooth compact Riemannian spin manifold,
o §is aspin bundle,
o [ is the usual Dirac operator.

=> This is the commutative prototype of spectral triples.

Reconstruction theorem by Connes (2008):

Commutative spectral triples (with additional axioms) are of the form
(C>(M), L*(8), D).

A spectral triple (A, H, D) encodes some metric properties of the “NC spaces”.
=> distance on the space of states of A.

e Behavior of the eigenvalues of |D| =» dimension of the spectral triple.
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Differential structures

A an associative algebra.

Definition (Differential calculus on an algebra)

A differential calculus on A is a graded differential algebra (Q°, d) such that Q° = A.
=>» Many differential calculi can be constructed on a given algebra.

Example (Universal unital differential calculus)

A a unital associative algebra.
(23 (A), dy) is the free unital graded diff. alg. generated by A in degree 0.
Elements are finite sum of adyb; - - - dyb, for a, by, ..., b, € A.

Universal property: for any unital diff. calc. (2°,d) on A, there exists a unique
morphism of unital diff. calc. ¢ : Q}(A) — Q° (of degree 0) such that ¢p(a) = a for any
ac A=Q)(A)=0Q"

=> Many diff. calc. are quotients of (Q2f,(A),dy).
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Derivation based differential calculus
A an associative algebra with unit 1.
o Z(A)={ae A /ab= ba Vb e A} its center.
@ Space of derivations of A:
Der(A) = {X: A — A/ X linear, X-(ab) = (X-a)b+ a(X-b),Va, b € A}.

=>» Lie algebra: [X,Y)]a = XYa — YPXafor all X,9) € Der(A),

=> Z(A)-module: (fX)-a = f(X-a) for all f € Z(A) and X € Der(A).
° Qp.(A) = A.
o Qp..(A) space of Z(A)-mult. antisym. maps from Der(A)" to A, n > 1.
C QBer(A) = @n>0 Qger( )
e N-graded differential algebra (product by antisymmetrization):

n+1

dw (X, ..., Ent1) —Z(f )% w0(X, - Ve, En)

+ ) (=)Mw((E, X,

1<i<j<n+1

A = C®(M) = (Q..(A),d) is the de Rham calculus.

<

o axn+1)-
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Spectral triples and forms

(A, H, D) a spectral triple.
e Any formw =) adyb - - - dyb, € Qf(A) gives a bounded operator
mp(w) =Y m(@)[D, ()] - - [D, 7(by)]
e This is not a representation of the (Q},(A), dy) as a graded diff. alg.

@ Perturbation of D by bounded operators does not change the K-homology class.
=>» D + wp(w) in the same class.

o Case (C>®(M), L%($), D):
E — M vector bundle, w connection 1-form on E
=> “[D + w” is the twisted Dirac operator defined on $ ® E.

20
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NC connections

A an associative algebra with unit 1. (Q°, d) a diff. calc. on A.
M a finite projective right module over A.

Definition (NC connection)

A NC connection on M is a linear map V.MM ®a Q' such that
V(ma) = (Vm)a+ m® dafor any m € Mand a € A.

V can be extended as V : M ®a QP — M @4 QP! for any p > 0, using the rule
V(im®wy) =(Vm)®w, + m® dw, forany w, € QF.

Definition (Curvature)

The curvature of v is defined as R=V2=VoV: M- M= Q%
It satisfies R(ma) = (Rm)a forany m€ Manda € A

Definition (Gauge transformations)
G the group of automorphisms of M as a right A-module.
For any ® € G, V® =d~"oVodis also a NC connection on M.

A = C°°(M) =>» usual theory of connections on vector bundles M = I'(E).

21
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NC connections: special case M = A

Special example of right module: M = A.
e Since A is unital: V(a) = V(1a) = V(1)a+ 1 ® da = V(1)a + da.
o V(1) = w € Q' characterizes completely V.
@ w is the NC connection 1-form.
o The curvature of V is the left multiplication by the 2-form Q = dw + ww € Q2.
e ® € G is completely determined by ®(1) = g € A (invertible element).

@ Gauge transformation of V:

wr g lwg + g7 'dg, Q— g 'Qg.

=> This permits to construct NC gauge field theories:
@ Need an appropriate Lagrangian =» different approaches.
e For A = C®(M) ® Ar where Ar = finite dim. alg. ~ M,(C), CV...
=>» NC connections split in two parts:
o geometric along C°°(M) =>» “ordinary” gauge field (Yang-Mills).

o algebraic along Ar =» new fields ~ scalar fields of the Higgs mechanism.

22
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NC connections and spectral triples
Definition

Two spectral triples (A, , D) and (A’, ', D’) are unitary equivalent if there exists
a unitary operator U : H — M’ and an algebra isomorphism ¢ : A — A’ such that
7’ o¢p=UrU"", D' = UDU".

Inner fluctuations:
o Case H' =H,A’ = A, 7' = 7 and ¢,(a) = u*au for a unitary u € U(A).
=>» Then U = m(u)*.
e Dis transformed as D" = UDU™' = D + ww(u)*[D, 7 (u)].
o Letw € Q[(A) be a NC connection 1-form for the module M = A.
o Interpret u € U(A) as a (unitary) gauge transformation.
o w'=v'wu+ u'du
o mp(w") = m(u)*np(w)m(u) + w(u)*[D, 7 (u)].
e Define D,, = D + mp(w), then
(Do)’ =Duv (= D+ m(u)'mp(w)n(u) + 7(u)*[D, m(u)])
To compensate the action of inner symmetries on D,
a NC connection is necessary.
=> Implementation of the gauge principle.

23



An introduction to noncommutative geometry, Aix-en-Provence, June 26, 2014 Thierry Masson, CPT-Luminy

NC torus

0 a real number.
@ On the Hilbert space L*(S'"), consider the two unitary operators
(UF)(t) = " f(t) (VA)(t) = £ (t =)
where f : S' — C is a periodic function in the variable ¢t € R.
o Then UV = ™ VU € B(L*(S")).
o Ay the C*-algebra generated by U and V in B(L*(S')) =» NC torus.

Suppose 0 is irrational:

e Ay is the irrational rotation algebra.
It is simple and universal for the relation UV = &>/ VU.

o Ag = Ai_p.
o a:S' =S, z+ ™z m>» action of Z on C(S")
=> Ay = C(S'") x4 Z (cross product C*-algebra).
e Ay is also associated to the Kronecker foliation dx = 6dy of the 2-torus.

e Finite projective modules are classified by two integers (p, q) s.t. p+ g6 > 0.

24
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NC torus: smooth structures

o S(Z?) the Schwartz space of sequences (@m, n)m,ncz of rapid decay:

(Im| + |n|)9|@m q| is bounded for any g € N.
o AZ° = elements in Ag of the form > ap ,U™V" for (am,n)mnez € S(73).
e By Fourier analysis S(Z?) ~ C>=(T?).

=> A%° is the space of “smooth functions on the NC torus”.

pq(a) = sup,, ez 1 (1 + [m| + [n])9]am,n|} is a family of semi-norms on Ag®.
=> Fréchet algebra.

o A%° has two derivations:

5,(U™) = 2mimU™, & (V") = v,

5, (U™ = U™, 5,(V") = 2minV"

T (Zm,nGZ A, U™ V”) = a0 is a trace (unique, extends to Ay).

@ Spectral triple:
o A= A,
e H = (Hilbert space of the GNS representation associated to T)®(C2,

e D= (513i62 51-Si62).

25
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NC torus: homologies

Let A = exp(2mif).
Diophantine condition: there exists an integer k such that [1 — A"|~"is O(n).

Theorem (Connes, 1985)
If X satisfies some diophantine condition:

HHS™(A°) = C HHEM(A°) = C?
For any \:

HHS™(AS°) = C HHS™(AZ°) = 0 forn > 3
If X does not satisfy some diophantine condition:
HHS"(Ag°) and HHE™(AS®) are infinite dimensional.

For any \:

HP§(Ag°) = C? HP{°"(A5°) = C?

Theorem

For any 0 irrational,
K()(Ago) = K()(Ae) = Zz ~ QZ aF Z7 K1(Ago) = K](Ag) = Zz

26
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