An introduction to noncommutative geometry

Aix-en-Provence, June 26, 2014

Thierry Masson

Centre de Physique Théorique Campus de Luminy, Marseille

NCG: the mathematical side

- NCG is motivated by deep results on correspondences spaces \leftrightarrow algebras.
 - Measurable spaces → abelian von Neumann algebras.
 - Topological spaces \rightarrow commutative C^* -algebras.
- Fact 1: some tools used to study these spaces have algebraic counterpart.
- Fact 2: these algebraic tools can be applied to NC algebras.

Main idea of NCG: replace commutative algebras of functions

by NC algebras in an identified category.

- Replace the geometric approach by an algebraic one.
- Give new light on difficult problems:
 - \rightarrow foliations and quotient spaces (NC torus)...
- "Differentiability" has been investigated in the 1980's (Connes).
 → Cyclic homology, Chern character, index theorems...
- NC "riemannian manifolds": spectral triples.
 - \rightarrow reconstruction theorem in 2008.

NCG: the physical side

• Physics in crisis:

Geometrical theories: general relativity, gauge field theories... **Algebraic theories:** quantum mechanic, QFT...

How to unify them?

- NCG is not a *theory* in physics.
- NCG is a framework in which to think about new theories.
 → different conceptualisations, unification...
- NCG has been constructed in relation to physics.
 → NC gauge field theories, NC space-times, quantum groups...
- Some NC topological invariants are been used to explained (partially) the Quantum Hall Effect.
- QFT on NC spaces \rightarrow new renormalizable non local models... (ϕ^4 theories on Moyal space)
- NCG gauge field theories contains naturally Higgs-like particles.

Abelian on von Neuman algebras

Theorem (Dixmier, von Neumann algebras, 1981)

Let H be a complex Hilbert space, and Z an abelian von Neumann algebra in H. There exists a locally compact space z, a positive measure ν on z, with support z, and an isometric isomorphism of the normed *-algebra Z onto the normed *-algebra $L^{\infty}_{\mathbb{C}}(z,\nu)$.

→ von Neumann algebras are "NC measurable spaces".

• Every von Neumann algebra on a separable Hilbert space is isomorphic to a direct integral of factors.

(factor = von Neumann algebra with trivial center).

- NC integration (weights), NC probability theory (states).
- Any locally compact group defines a von Neumann algebra (and a C*-algebra). abelian group → abelian von Neumann (C*-) algebra.

→ Fourier transformation (Pontryagin dual gr.).

 \rightarrow NC harmonic analysis...

- Tomita-Takesaki theory of von Neumann algebra:
 - → extends to von Neumann algebra the non-modularity of groups;
 - \rightarrow relation to KMS states in statistical physics.

Commutative C*-algebras

Theorem (Gelfand-Naimark)

The category of locally compact Hausdorff spaces is anti-equivalent to the category of commutative C^* -algebras.

Space $X \leftrightarrow$ algebra of continuous functions $C_0(X)$ vanishing at infinity.

This leads to the correspondences:

Spaces	Algebras
point	irreducible representation
compact	unital
1-point compactification	unitarization
Stone-Čech compactification	multiplier algebra
homeomorphism	automorphism
Borel measure	positive functional
probability measure	state

Finite projective modules

Theorem (Serre-Swan)

The category of complex vector bundles on a compact Hausdorff space X is equivalent to the category of finite projective modules over the algebra C(X) (continuous functions).

Vector bundle $E \leftrightarrow$ Space of continuous sections $\Gamma(E)$. \rightarrow projection in some $M_N(C(X))$.

This works also in the category of smooth manifolds.

- Notion of "vector bundles" in NCG: finite projective modules over A.
- Covariant derivatives have a NC generalisation (explained later).
 This permits to define NC gauge field theories.

Origin of common NC spaces

NC spaces are in general defined as von Neumann algebras or C^* -algebras.

Many constructions can give very interesting examples:

Deformation: the idea is to deform a commutative algebra (+ extra structure...).

- \rightarrow Moyal algebra, related to the canonical commutation relations in QM.
- \rightarrow κ -Minkowski space, (co)-representation space of a quantum group.

Group algebras: any locally compact group defines a C^* -algebra.

- \rightarrow Study of the representation theory of the group.
- \rightarrow More generally: C^* -algebra of a smooth groupoid.

Cross products: action of a locally compact group on a given algebra.

 \rightarrow Compatible with semidirect product of groups and C^* -alg. of groups.

Quantum groups: Hopf algebra structures.

 \rightarrow usually a deformation of the matrix entries of an ordinary group.

→ representation theory, new "symmetries"...

Quotients by equivalence relation: general construction gives an algebra which is Morita equivalent to the "expected" one if the quotient space is good enough.

Generators and relations: the algebra is directly defined by some elements.

 \rightarrow Compatible with C^* -alg. of groups presented as generators and relations.

K-theories

X a compact topological space:

- K⁰(X): Grothendieck group of the semigroup V(X) of isomorphic classes of vector bundles over X.
 (Reminder: ℤ is the Grothendieck group of the semigroup ℕ...)
- Definition extends to non compact spaces.
- $K^{-n}(X) = K^0(X \times \mathbb{R}^n).$

A a unital C*-algebra:

- K₀(A): Grothendieck group of the semigroup V(A) of homotopy classes of projections in M_∞(A) (finite proj. mod. on A).
- Definition extends to non unital C*-algebras.
- $K_n(\mathbf{A}) = K_0(C_0(\mathbb{R}^n, \mathbf{A})).$

Gelfand-Naimark + Serre-Swan theorems $\rightarrow K^{-n}(X) = K_n(C_0(X)).$

The topological invariants detected by *K*-groups are the same. \rightarrow *K*-groups of *C*^{*}-algebras are more general.

K-theories (cont'd)

- *K*-theory of *C**-algebras works for noncommutative algebras.
 - \rightarrow Essential tool to study NC spaces in NCG.
- K-theory of Fréchet, pre-C*, or Banach algebras is well defined.
 → K-groups of a C*-algebra can be computed using a dense subalgebra. (stable by holomorphic functional calculus)

A a unital associative algebra:

- Algebraic K-theory: K_ν^{alg}(A), ν = 0, 1, for associative algebra without topology. (Projectors in M_∞(A) (p ~ u⁻¹qu) and abelianization of GL_∞(A))
- Definitions for higher degrees are very involved...

Other *"K***-theories***"*:

• *K*-homology, dual to *K*-theory.

→ Based on Fredholm operators on Hilbert spaces.

- *KK*-theory, contains *K*-theory and *K*-homology.
 - \rightarrow Based on Hilbert *C*^{*}-modules = generalization of Hilbert spaces.

K-theories: some properties

Theorem (Bott periodicity)

For any C^* -algebra **A**, one has

$$K_2(\mathbf{A}) \simeq K_0(\mathbf{A})$$

 \rightarrow Only two *K*-groups: $K_0(\mathbf{A})$ and $K_1(\mathbf{A})$.

Proposition (Six terms exact sequence)

For any short exact sequence of C^* -algebras $0 \longrightarrow I \longrightarrow A \longrightarrow A/I \longrightarrow 0$, one has the six terms exact sequence

 \rightarrow δ are index maps (as in Atiyah-Singer index theorem...).

Proposition (Algebraic K-theory)

A a C^* -algebra: $K_0^{alg}(\mathbf{A}) = K_0(\mathbf{A})$ and $K_1^{alg}(\mathbf{A}) \to K_1(\mathbf{A})$ (not an isomorphism).

Worth mentioning Morita invariance also...

Cyclic homology

A unital associative algebra.

Hochschild complex with values in A: $\mathbf{A} \stackrel{b}{\leftarrow} \cdots \stackrel{b}{\leftarrow} \mathbf{A}^{\otimes n} \stackrel{b}{\leftarrow} \mathbf{A}^{\otimes n+1} \stackrel{b}{\leftarrow} \cdots$

$$b(a_0 \otimes \cdots \otimes a_n) = \sum_{p=0}^{n-1} (-1)^p a_0 \otimes \cdots \otimes a_p a_{p+1} \otimes \cdots \otimes a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1}$$

Hochschild homology: $HH_{\bullet}(A)$ homology of this complex.

 $t : \mathbf{A}^{\otimes n} \to \mathbf{A}^{\otimes n}$ cyclic operator: $t(a_1 \otimes \cdots \otimes a_n) = (-1)^{n+1} a_n \otimes a_1 \otimes \cdots \otimes a_{n-1}$. b well-defined on $C_n^{\lambda}(\mathbf{A}) = \mathbf{A}^{\otimes n+1} / \operatorname{Ran}(1-t)$. Cyclic homology: $HC_{\bullet}(\mathbf{A})$ homology of $(C_{\bullet}^{\lambda}(\mathbf{A}), b)$.

Proposition (Connes long exact sequence)

There are morphisms I and S which induce the following long exact sequence

$$\cdots \longrightarrow HH_n(\mathbf{A}) \xrightarrow{l} HC_n(\mathbf{A}) \xrightarrow{S} HC_{n-2}(\mathbf{A}) \xrightarrow{B} HH_{n-1}(\mathbf{A}) \xrightarrow{l} \cdots$$

For non unital algebras, need bicomplexes...

Cyclic cohomology is defined using Hochschild cohomology with values in A*. → similar operators *I* and *S*, and long exact sequence.

Periodic cyclic (co)homology

Periodic cyclic cohomology: $HP^{\bullet}(\mathbf{A})$ is defined using *S*. Only 2 groups: $HP^{0}(\mathbf{A}) = \varinjlim HC^{2n}(\mathbf{A})$ and $HP^{1}(\mathbf{A}) = \varinjlim HC^{2n+1}(\mathbf{A})$. In the same way, one can define the **periodic cyclic homology:** $HP_{\bullet}(\mathbf{A})$.

Proposition (Six terms exact sequence)

For any short exact sequence of associative algebras $0 \rightarrow I \rightarrow A \rightarrow A/I \rightarrow 0$, one has the six terms exact sequence

$$\begin{array}{c} HP_0(\mathbf{I}) \longrightarrow HP_0(\mathbf{A}) \longrightarrow HP_0(\mathbf{A}/\mathbf{I}) \\ & \delta^{\uparrow} & & \downarrow^{\delta} \\ HP_1(\mathbf{A}/\mathbf{I}) \longleftarrow HP_1(\mathbf{A}) \longleftarrow HP_1(\mathbf{I}) \end{array}$$

Proposition (Diffeotopic invariance)

A and **B** two associative algebras. If $\varphi_0, \varphi_1 : \mathbf{A} \to \mathbf{B}$ are diffeotopic, then they induce the same morphism $HP_{\nu}(\mathbf{A}) \to HP_{\nu}(\mathbf{B})$.

 $\varphi : \mathbf{A} \to \mathbf{B} \otimes C^{\infty}([0, 1]) \text{ s.t. } \varphi_t \text{ is } \varphi_0 \text{ (resp. } \varphi_1) \text{ at } t = 0 \text{ (resp. } t = 1)$ \longrightarrow Does not work for homotopy!

Worth mentioning Morita invariance also...

Cyclic homology: examples

Example A = \mathbb{C} : $HH_0(\mathbb{C}) = \mathbb{C}$ $HH_n(\mathbb{C}) = 0$ for $n \ge 1$ $HP_0(\mathbb{C}) = \mathbb{C}$ $HP_1(\mathbb{C}) = 0$ Example A = $\mathbb{C}[z, z^{-1}]$ (Laurent polynomials): $HP_0(\mathbb{C}[z, z^{-1}]) = \mathbb{C}$ $HP_1(\mathbb{C}[z, z^{-1}]) = \mathbb{C}$

Hochschild and cyclic homologies can be defined for topological algebras. **Example A = C(X)**, continuous functions on a compact space X: $HP_0^{\text{cont}}(C(X)) = \{\text{bounded measures on } X\}$ $HP_1^{\text{cont}}(C(X)) = 0$

M a finite dim. loc. compact manifold. Example $A = C^{\infty}(M)$, Fréchet algebra of smooth functions on *M*:

Theorem (Connes, 1985)

 $HH^{Cont}_{\bullet}(C^{\infty}(\mathcal{M})) = \Omega^{\bullet}_{\mathbb{C}}(\mathcal{M})$ (complexified de Rham forms)

 $HP_0^{cont}(C^{\infty}(\mathcal{M})) = H_{dR}^{even}(\mathcal{M}) \qquad HP_1^{cont}(C^{\infty}(\mathcal{M})) = H_{dR}^{odd}(\mathcal{M})$

→ Cyclic homology is the NC generalization of de Rham cohomology.

The Chern character

Theorem (The (geometric) Chern character)

The (usual) Chern character $ch(E) = tr \circ exp\left(\frac{iF}{2\pi}\right)$ realizes an isomorphism $ch : K^0(\mathcal{M}) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\simeq} H^{even}(\mathcal{M}; \mathbb{Q})$ for locally compact finite dimensional (smooth) manifolds \mathcal{M} .

It can be extended to an isomorphism $ch : K^1(M) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\simeq} H^{odd}(M; \mathbb{Q}).$

Proposition (The (algebraic) Chern character)

The Chern character realizes a map ch : $K_{\nu}^{alg}(\mathbf{A}) \rightarrow HP_{\nu}(\mathbf{A})$ for $\nu = 0, 1$.

→ Defined by the generators of $HP_0(\mathbb{C}) = \mathbb{C}$ and $HP_1(\mathbb{C}[z, z^{-1}]) = \mathbb{C}$.

The algebraic Chern character factorizes through *K*-theory of topological algebras.

Theorem (The (NC) Chern character)

For a large class of Fréchet algebras, the Chern character realizes an isomorphism ch : $K_{\nu}(\mathbf{A}) \otimes \mathbb{C} \xrightarrow{\simeq} HP_{\nu}(\mathbf{A})$

→ The Fréchet algebras $C^{\infty}(M)$ for locally compact manifolds *M* are in this class.

Pairing and Fredholm modules

A a topological algebra (Fréchet, pre- C^* , Banach).

- We have introduced the Chern character as a map ch : $K_{\nu}(\mathbf{A}) \rightarrow HP_{\nu}(\mathbf{A})$.
- It is also a pairing $K_{\nu}(\mathbf{A}) \times HP^{\nu}(\mathbf{A}) \rightarrow \mathbb{C}$.
- It is also a map K^ν(A) → HP^ν(A), where K^ν(A) is the K-homology of A.
 - Elements in $K^1(\mathbf{A})$ are classes of (odd) Fredholm modules $(\mathbf{A}, \mathcal{H}, F)$;
 - \mathcal{H} is a Hilbert space which supports an involutive representation π of **A**;
 - *F* is a bounded operator on \mathcal{H} such that $F = F^*$, $F^2 = 1$;
 - $[F, \pi(a)]$ is compact for any $a \in \mathbf{A}$;
 - then (Connes, 1985)

$$\tau(a^0,\ldots,a^n)=\mathrm{Tr}(a^0[F,a^1]\cdots[F,a^n])$$

defines an element in $HP^{1}(\mathbf{A})$.

- Need trace-class operators: "summability" of Fredholm modules.
 - → Schatten ideals $\mathcal{L}^{p}(\mathcal{H}) = \{T \in \mathcal{B}(\mathcal{H}) / \operatorname{Tr}(|T|^{p}) < \infty\}.$
 - \rightarrow "Infinitesimals of order *p* in this quantum calculus" (Connes).

Remark

K-theory is a theory for NC topological spaces.

Periodic cyclic homology is a theory for algebras with "differentiable structures".

Spectral triples

Spectral triples are "unbounded Fredholm modules".

A an involutive unital associative algebra.

Definition (Spectral triple)

A spectral triple on A is a triple (A, H, D) where

- \mathcal{H} is a Hilbert space on which an involutive representation ρ of **A** is given;
- \mathcal{D} is a (unbounded) self-adjoint operator on \mathcal{H} ;
- the resolvant of $\mathcal D$ is compact;
- $[\mathcal{D}, \rho(a)]$ is bounded for any $a \in \mathbf{A}$.

Many more axioms for complete description:

- Grading \rightarrow charge conjugaison in physics.
- Reality operator -> Tomita-Takesaki theory.
- Regularity condition

 \rightarrow defines the "smooth" algebra A as a dense subalgebra of a C^* -algebra

Spectral triples (cont'd)

- $(\mathbf{A}, \mathcal{H}, \mathcal{D}(1 + \mathcal{D}^2)^{-1/2})$ defines a Fredholm modules (except for $F^2 = 1$):
 - class in K^ν(A);
 - element in $HP^{\nu}(\mathbf{A})$ by the Chern character;
 - Summability conditions on $(\mathbf{A}, \mathcal{H}, \mathcal{D})$.
- The operator ${\cal D}$ is called a Dirac operator.
 - \rightarrow This comes from $(\mathbf{A}, \mathcal{H}, \mathcal{D}) = (C^{\infty}(\mathcal{M}), L^{2}(\$), \emptyset)$ where
 - M is a smooth compact Riemannian spin manifold,
 - \$ is a spin bundle,

→ This is the commutative prototype of spectral triples.

• Reconstruction theorem by Connes (2008):

Commutative spectral triples (with additional axioms) are of the form $(C^{\infty}(M), L^{2}(\$), \not D)$.

- A spectral triple (A, H, D) encodes some metric properties of the "NC spaces".
 → distance on the space of states of A.
- Behavior of the eigenvalues of $|\mathcal{D}| \rightarrow$ dimension of the spectral triple.

Differential structures

A an associative algebra.

Definition (Differential calculus on an algebra)

A differential calculus on **A** is a graded differential algebra (Ω^{\bullet}, d) such that $\Omega^{0} = \mathbf{A}$.

→ Many differential calculi can be constructed on a given algebra.

Example (Universal unital differential calculus)

A a unital associative algebra.

 $(\Omega_U^{\bullet}(\mathbf{A}), \mathbf{d}_U)$ is the free unital graded diff. alg. generated by \mathbf{A} in degree 0. Elements are finite sum of $a\mathbf{d}_U b_1 \cdots \mathbf{d}_U b_n$ for $a, b_1, \ldots, b_n \in \mathbf{A}$.

Universal property: for any unital diff. calc. (Ω^{\bullet}, d) on \mathbf{A} , there exists a unique morphism of unital diff. calc. $\phi : \Omega^{\bullet}_{U}(\mathbf{A}) \to \Omega^{\bullet}$ (of degree 0) such that $\phi(a) = a$ for any $a \in \mathbf{A} = \Omega^{0}_{U}(\mathbf{A}) = \Omega^{0}$.

 \rightarrow Many diff. calc. are quotients of $(\Omega^{\bullet}_{U}(\mathbf{A}), \mathsf{d}_{U})$.

Derivation based differential calculus

A an associative algebra with unit 1.

- $\mathcal{Z}(\mathbf{A}) = \{a \in \mathbf{A} \mid ab = ba, \forall b \in \mathbf{A}\}$ its center.
- Space of derivations of A:

 $\mathsf{Der}(\mathsf{A}) = \{\mathfrak{X} : \mathsf{A} \to \mathsf{A} \ / \ \mathfrak{X} \ \mathsf{linear}, \mathfrak{X} \cdot (ab) = (\mathfrak{X} \cdot a)b + a(\mathfrak{X} \cdot b), \forall a, b \in \mathsf{A}\}.$ $\Rightarrow \mathsf{Lie algebra:} \ [\mathfrak{X}, \mathfrak{Y}]a = \mathfrak{X}\mathfrak{Y}a - \mathfrak{Y}\mathfrak{X}a \ \mathsf{for all} \ \mathfrak{X}, \mathfrak{Y} \in \mathsf{Der}(\mathsf{A}),$

→
$$\mathcal{Z}(\mathbf{A})$$
-module: $(f\mathfrak{X}) \cdot a = f(\mathfrak{X} \cdot a)$ for all $f \in \mathcal{Z}(\mathbf{A})$ and $\mathfrak{X} \in \text{Der}(\mathbf{A})$.

- $\underline{\Omega}^0_{\text{Der}}(\mathbf{A}) = \mathbf{A}.$
- $\underline{\Omega}_{Der}^{n}(\mathbf{A})$ space of $\mathcal{Z}(\mathbf{A})$ -mult. antisym. maps from $Der(\mathbf{A})^{n}$ to $\mathbf{A}, n \geq 1$.
- $\underline{\Omega}^{\bullet}_{\mathrm{Der}}(\mathbf{A}) = \bigoplus_{n \geq 0} \underline{\Omega}^n_{\mathrm{Der}}(\mathbf{A}).$
- $\bullet~\mathbb{N}\text{-}\mathsf{graded}$ differential algebra (product by antisymmetrization):

$$\widehat{d}\omega(\mathfrak{X}_{1},\ldots,\mathfrak{X}_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i+1} \mathfrak{X}_{i} \cdot \omega(\mathfrak{X}_{1},\ldots\overset{i}{\vee}\ldots,\mathfrak{X}_{n+1}) \\ + \sum_{1 \leq i < j \leq n+1} (-1)^{i+j} \omega([\mathfrak{X}_{i},\mathfrak{X}_{j}],\ldots\overset{i}{\vee}\ldots\overset{j}{\vee}\ldots,\mathfrak{X}_{n+1}).$$

• $\mathbf{A} = C^{\infty}(M) \longrightarrow (\underline{\Omega}^{\bullet}_{\text{Der}}(\mathbf{A}), \widehat{\mathbf{d}})$ is the de Rham calculus.

Spectral triples and forms

$(\mathbf{A}, \mathcal{H}, \mathcal{D})$ a spectral triple.

- Any form $\omega = \sum a d_U b_1 \cdots d_U b_n \in \Omega^{\bullet}_U(\mathbf{A})$ gives a bounded operator $\pi_{\mathcal{D}}(\omega) = \sum \pi(a)[\mathcal{D}, \pi(b_1)] \cdots [\mathcal{D}, \pi(b_n)]$
- This is not a representation of the $(\Omega^{\bullet}_{U}(\mathbf{A}), \mathsf{d}_{U})$ as a graded diff. alg.
- Perturbation of \mathcal{D} by bounded operators does not change the *K*-homology class. $\rightarrow \mathcal{D} + \pi_{\mathcal{D}}(\omega)$ in the same class.
- Case $(C^{\infty}(\mathcal{M}), L^2(\$), \not D)$:
 - $E \rightarrow M$ vector bundle, ω connection 1-form on E

 \rightarrow " $\not D$ + ω " is the twisted Dirac operator defined on $\not S \otimes E$.

NC connections

A an associative algebra with unit 11. (Ω^{\bullet}, d) a diff. calc. on A. *M* a finite projective right module over A.

Definition (NC connection)

A NC connection on M is a linear map $\widehat{\nabla} : M \to M \otimes_A \Omega^1$ such that $\widehat{\nabla}(ma) = (\widehat{\nabla}m)a + m \otimes da$ for any $m \in M$ and $a \in A$.

 $\widehat{\nabla} \text{ can be extended as } \widehat{\nabla} : \mathcal{M} \otimes_{\mathbf{A}} \Omega^{p} \to \mathcal{M} \otimes_{\mathbf{A}} \Omega^{p+1} \text{, for any } p \geq 0 \text{, using the rule}$ $\widehat{\nabla} (m \otimes \omega_{p}) = (\widehat{\nabla} m) \otimes \omega_{p} + m \otimes d\omega_{p} \quad \text{for any } \omega_{p} \in \Omega^{p}.$

Definition (Curvature)

The curvature of $\widehat{\nabla}$ is defined as $\widehat{R} = \widehat{\nabla}^2 = \widehat{\nabla} \circ \widehat{\nabla} : \mathbf{M} \to \mathbf{M} \otimes_{\mathbf{A}} \Omega^2$. It satisfies $\widehat{R}(ma) = (\widehat{R}m)a$ for any $m \in \mathbf{M}$ and $a \in \mathbf{A}$

Definition (Gauge transformations)

 \mathcal{G} the group of automorphisms of M as a right A-module. For any $\Phi \in \mathcal{G}$, $\widehat{\nabla}^{\Phi} = \Phi^{-1} \circ \widehat{\nabla} \circ \Phi$ is also a NC connection on M.

 $A = C^{\infty}(M) \rightarrow$ usual theory of connections on vector bundles $M = \Gamma(E)$.

NC connections: special case M = A

Special example of right module: M = A.

- Since **A** is unital: $\widehat{\nabla}(a) = \widehat{\nabla}(\mathbb{1}a) = \widehat{\nabla}(\mathbb{1})a + \mathbb{1} \otimes da = \widehat{\nabla}(\mathbb{1})a + da$.
- $\widehat{\nabla}(\mathbf{1}) = \omega \in \Omega^1$ characterizes completely $\widehat{\nabla}$.
- ω is the NC connection 1-form.
- The curvature of $\widehat{\nabla}$ is the left multiplication by the 2-form $\Omega = d\omega + \omega\omega \in \Omega^2$.
- $\Phi \in \mathcal{G}$ is completely determined by $\Phi(\mathbb{1}) = g \in \mathbf{A}$ (invertible element).

• Gauge transformation of
$$\widehat{
abla}$$
:

$$\omega \mapsto g^{-1} \omega g + g^{-1} \mathrm{d} g, \qquad \qquad \Omega \mapsto g^{-1} \Omega g.$$

- → This permits to construct NC gauge field theories:
 - Need an appropriate Lagrangian \rightarrow different approaches.
 - For A = C[∞](M) ⊗ A_F where A_F = finite dim. alg. ≃ M_n(C), C^N...
 → NC connections split in two parts:
 - geometric along $C^{\infty}(M) \rightarrow$ "ordinary" gauge field (Yang-Mills).
 - algebraic along $A_F \rightarrow$ new fields \simeq scalar fields of the Higgs mechanism.

NC connections and spectral triples

Definition

Two spectral triples $(\mathbf{A}, \mathcal{H}, \mathcal{D})$ and $(\mathbf{A}', \mathcal{H}', \mathcal{D}')$ are unitary equivalent if there exists a unitary operator $U : \mathcal{H} \to \mathcal{H}'$ and an algebra isomorphism $\phi : \mathbf{A} \to \mathbf{A}'$ such that $\pi' \circ \phi = U\pi U^{-1}, \mathcal{D}' = U\mathcal{D}U^{-1}.$

Inner fluctuations:

- Case $\mathcal{H}' = \mathcal{H}$, $\mathbf{A}' = \mathbf{A}$, $\pi' = \pi$ and $\phi_u(a) = u^* a u$ for a unitary $u \in U(\mathcal{A})$. \rightarrow Then $U = \pi(u)^*$.
- \mathcal{D} is transformed as $\mathcal{D}^u = U\mathcal{D}U^{-1} = \mathcal{D} + \pi(u)^*[\mathcal{D}, \pi(u)].$
- Let $\omega \in \Omega^1_U(\mathbf{A})$ be a NC connection 1-form for the module $\mathbf{M} = \mathbf{A}$.
 - Interpret $u \in U(\mathcal{A})$ as a (unitary) gauge transformation.
 - $\omega^u = u^* \omega u + u^* \mathrm{d} u$
 - $\pi_{\mathcal{D}}(\omega^u) = \pi(u)^* \pi_{\mathcal{D}}(\omega) \pi(u) + \pi(u)^* [\mathcal{D}, \pi(u)].$

 Define D_ω = D + π_D(ω), then
 (D_ω)^u = D_{ω^u} (= D + π(u)*π_D(ω)π(u) + π(u)*[D, π(u)])
 To compensate the action of inner symmetries on D,
 a NC connection is necessary.
 → Implementation of the gauge principle.

NC torus

 $\boldsymbol{\theta}$ a real number.

• On the Hilbert space $L^2(\mathbb{S}^1)$, consider the two unitary operators $(Uf)(t) = e^{2\pi i t} f(t)$ $(Vf)(t) = f(t - \theta)$

where $f : \mathbb{S}^1 \to \mathbb{C}$ is a periodic function in the variable $t \in \mathbb{R}$.

- Then $UV = e^{2\pi i\theta} VU \in \mathcal{B}(L^2(\mathbb{S}^1)).$
- \mathcal{A}_{θ} the C^* -algebra generated by U and V in $\mathcal{B}(L^2(\mathbb{S}^1)) \longrightarrow \mathbb{NC}$ torus.

Suppose θ is irrational:

• A_{θ} is the **irrational rotation algebra**. It is simple and universal for the relation $UV = e^{2\pi i\theta} VU$.

•
$$\mathcal{A}_{\theta} = \mathcal{A}_{1-\theta}$$
.

- $\alpha : \mathbb{S}^1 \to \mathbb{S}^1, z \mapsto e^{2i\pi\theta} z \longrightarrow$ action of \mathbb{Z} on $C(\mathbb{S}^1) \longrightarrow \mathcal{A}_{\theta} = C(\mathbb{S}^1) \rtimes_{\alpha} \mathbb{Z}$ (cross product C^* -algebra).
- A_{θ} is also associated to the Kronecker foliation $dx = \theta dy$ of the 2-torus.
- Finite projective modules are classified by two integers (p, q) s.t. $p + q\theta \ge 0$.

NC torus: smooth structures

- S(Z²) the Schwartz space of sequences (a_{m,n})_{m,n∈Z} of rapid decay: (|m| + |n|)^q|a_{m,n}| is bounded for any q ∈ N.
- $\mathcal{A}^{\infty}_{\theta}$ = elements in \mathcal{A}_{θ} of the form $\sum_{m,n\in\mathbb{Z}} a_{m,n} U^m V^n$ for $(a_{m,n})_{m,n\in\mathbb{Z}} \in \mathcal{S}(\mathbb{Z}^2)$.
- By Fourier analysis S(Z²) ≃ C[∞](T²).
 → A_θ[∞] is the space of "smooth functions on the NC torus".
- $p_q(a) = \sup_{m,n \in \mathbb{Z}} \{ (1 + |m| + |n|)^q | a_{m,n} | \}$ is a family of semi-norms on $\mathcal{A}^{\infty}_{\theta}$. \rightarrow Fréchet algebra.
- $\mathcal{A}^{\infty}_{\theta}$ has two derivations:

$$\delta_1(U^m) = 2\pi i m U^m, \qquad \delta_1(V^n) = V^n, \\ \delta_2(U^m) = U^m, \qquad \delta_2(V^n) = 2\pi i n V^n$$

• $\tau\left(\sum_{m,n\in\mathbb{Z}}a_{m,n}U^{m}V^{n}\right)=a_{0,0}$ is a trace (unique, extends to \mathcal{A}_{θ}).

- Spectral triple:
 - $\mathbf{A} = \mathcal{A}_{\theta}^{\infty}$,
 - *H* = (Hilbert space of the GNS representation associated to *τ*)⊗C²,
 - $\mathcal{D} = \left(\begin{smallmatrix} 0 & \delta_1 + i \delta_2 \\ \delta_1 i \delta_2 & 0 \end{smallmatrix} \right).$

NC torus: homologies

Let $\lambda = \exp(2\pi i\theta)$. Diophantine condition: there exists an integer k such that $|1 - \lambda^n|^{-1}$ is $O(n^k)$.

Theorem (Connes, 1985)

If λ satisfies some diophantine condition: $HH_0^{Cont}(\mathcal{A}_{\theta}^{\infty}) = \mathbb{C}$

For any λ :

$$HH_2^{Cont}(\mathcal{A}_{\theta}^{\infty}) = \mathbb{C}$$
 $HH_n^{Cont}(\mathcal{A}_{\theta}^{\infty}) = 0 \text{ for } n \geq 3$

 $HH_1^{Cont}(\mathcal{A}^{\infty}_{\theta}) = \mathbb{C}^2$

If λ does not satisfy some diophantine condition: $HH_0^{Cont}(\mathcal{A}_{\theta}^{\infty})$ and $HH_1^{Cont}(\mathcal{A}_{\theta}^{\infty})$ are infinite dimensional. For any λ :

$$HP_0^{cont}(\mathcal{A}_{\theta}^{\infty}) = \mathbb{C}^2 \qquad \qquad HP_1^{cont}(\mathcal{A}_{\theta}^{\infty}) = \mathbb{C}^2$$

Theorem

For any θ irrational,

$$K_0(\mathcal{A}^\infty_ heta)=K_0(\mathcal{A}_ heta)=\mathbb{Z}^2\simeq heta\mathbb{Z}+\mathbb{Z}, \qquad \quad K_1(\mathcal{A}^\infty_ heta)=K_1(\mathcal{A}_ heta)=\mathbb{Z}^2$$

Some references

- Connes, A. (1985). *Non-commutative differential geometry*. Publications Mathématiques de l'IHES.
- Connes, A. (1994). Noncommutative Geometry. Academic Press.
- Connes, A. and Marcolli, M. (2008). "A walk in the noncommutative garden". In: An invitation to noncommutative geometry. World Scientific Publishing Company, pp. 1–128.
- Dixmier, J. (1981). von Neumann algebras. Elsevier (cit. on p. 4).
- François, J., Lazzarini, S., and Masson, T. (2014). "Gauge field theories: various mathematical approaches". In: *Mathematical Structures of the Universe (to appear)*. Kraków, Poland: Copernicus Center Press.
- Masson, T. (2008a). "An informal introduction to the ideas and concepts of noncommutative geometry". In: *Integrables Systems and Quantum Fields Theories*. Hermann.
- Masson, T. (2008b). Examples of derivation-based differential calculi related to noncommutative gauge theories. Int. J. Geom. Methods Mod. Phys. 5.8, pp. 1315–1336.
- Masson, T. (2012). "Gauge theories in noncommutative geometry". In: *FFP11 Symposium Proceedings*. AIP.

Thanks you for your attention