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NCG: the mathematical side
NCG is motivated by deep results on correspondences spaces Ö algebras.

Measurable spaces Ù abelian von Neumann algebras.
Topological spaces Ù commutative C∗-algebras.

Fact 1: some tools used to study these spaces have algebraic counterpart.

Fact 2: these algebraic tools can be applied to NC algebras.

Main idea of NCG:
replace commutative algebras of functions
by NC algebras in an identified category.

Replace the geometric approach by an algebraic one.

Give new light on di�icult problems:
Ù foliations and quotient spaces (NC torus). . .

“Di�erentiability” has been investigated in the 1980’s (Connes).
Ù Cyclic homology, Chern character, index theorems. . .

NC “riemannian manifolds”: spectral triples.
Ù reconstruction theorem in 2008.
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NCG: the physical side

Physics in crisis:
Geometrical theories: general relativity, gauge field theories. . .
Algebraic theories: quantum mechanic, QFT. . .
How to unify them?

NCG is not a theory in physics.

NCG is a framework in which to think about new theories.
Ù di�erent conceptualisations, unification. . .

NCG has been constructed in relation to physics.
Ù NC gauge field theories, NC space-times, quantum groups. . .

Some NC topological invariants are been used to explained (partially) the
�antum Hall E�ect.

QFT on NC spaces Ù new renormalizable non local models. . .
(φ4 theories on Moyal space)

NCG gauge field theories contains naturally Higgs-like particles.
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Abelian on von Neuman algebras
Theorem (Dixmier, von Neumann algebras, 1981)
Let H be a complex Hilbert space, and Z an abelian von Neumann algebra in H. There
exists a locally compact space z, a positive measure ν on z, with support z, and an
isometric isomorphism of the normed ∗-algebra Z onto the normed ∗-algebra L∞C (z, ν).

Ù von Neumann algebras are “NC measurable spaces”.

Every von Neumann algebra on a separable Hilbert space is isomorphic to a
direct integral of factors.
(factor = von Neumann algebra with trivial center).

NC integration (weights), NC probability theory (states).

Any locally compact group defines a von Neumann algebra (and a C∗-algebra).
abelian group Ù abelian von Neumann (C∗-) algebra.

Ù Fourier transformation (Pontryagin dual gr.).
Ù NC harmonic analysis. . .

Tomita-Takesaki theory of von Neumann algebra:
Ù extends to von Neumann algebra the non-modularity of groups;
Ù relation to KMS states in statistical physics.
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Commutative C∗-algebras

Theorem (Gelfand-Naimark)
The category of locally compact Hausdor� spaces is anti-equivalent to the category of
commutative C∗-algebras.

Space X Ö algebra of continuous functions C0(X) vanishing at infinity.

This leads to the correspondences:

Spaces Algebras

point irreducible representation
compact unital

1-point compactification unitarization
Stone-Čech compactification multiplier algebra

homeomorphism automorphism
Borel measure positive functional

probability measure state

5



An introduction to noncommutative geometry, Aix-en-Provence, June 26, 2014 Thierry Masson, CPT-Luminy

Finite projective modules

Theorem (Serre-Swan)
The category of complex vector bundles on a compact Hausdor� space X is equivalent to
the category of finite projective modules over the algebra C(X) (continuous functions).

Vector bundle E Ö Space of continuous sections Γ(E).
Ù projection in some MN (C(X)).

This works also in the category of smooth manifolds.

Notion of “vector bundles” in NCG: finite projective modules over A.

Covariant derivatives have a NC generalisation (explained later).
Ù This permits to define NC gauge field theories.
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Origin of common NC spaces
NC spaces are in general defined as von Neumann algebras or C∗-algebras.

Many constructions can give very interesting examples:

Deformation: the idea is to deform a commutative algebra (+ extra structure. . . ).
Ù Moyal algebra, related to the canonical commutation relations in QM.
Ù κ-Minkowski space, (co)-representation space of a quantum group.

Group algebras: any locally compact group defines a C∗-algebra.
Ù Study of the representation theory of the group.
Ù More generally: C∗-algebra of a smooth groupoid.

Cross products: action of a locally compact group on a given algebra.
Ù Compatible with semidirect product of groups and C∗-alg. of groups.

�antum groups: Hopf algebra structures.
Ù usually a deformation of the matrix entries of an ordinary group.
Ù representation theory, new “symmetries”. . .

�otients by equivalence relation: general construction gives an algebra which
is Morita equivalent to the “expected” one if the quotient space is good enough.

Generators and relations: the algebra is directly defined by some elements.
Ù Compatible with C∗-alg. of groups presented as generators and relations.
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K -theories
X a compact topological space:

K 0(X): Grothendieck group of the semigroup V (X) of isomorphic classes of
vector bundles over X .
(Reminder: Z is the Grothendieck group of the semigroup N. . . )

Definition extends to non compact spaces.

K−n(X) = K 0(X × Rn).

A a unital C∗-algebra:
K0(A): Grothendieck group of the semigroup V (A) of homotopy classes of
projections in M∞(A) (finite proj. mod. on A).

Definition extends to non unital C∗-algebras.

Kn(A) = K0(C0(Rn,A)).

Gelfand-Naimark + Serre-Swan theorems Ù K−n(X) = Kn(C0(X)).

The topological invariants detected by K -groups are the same.
Ù K -groups of C∗-algebras are more general.
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K -theories (cont’d)

K -theory of C∗-algebras works for noncommutative algebras.
Ù Essential tool to study NC spaces in NCG.

K -theory of Fréchet, pre-C∗, or Banach algebras is well defined.
Ù K -groups of a C∗-algebra can be computed using a dense subalgebra.

(stable by holomorphic functional calculus)

A a unital associative algebra:

Algebraic K -theory: K alg
ν (A), ν = 0, 1, for associative algebra without topology.

(Projectors in M∞(A) (p ∼ u−1qu) and abelianization of GL∞(A))

Definitions for higher degrees are very involved. . .

Other “K -theories”:
K -homology, dual to K -theory.
Ù Based on Fredholm operators on Hilbert spaces.

KK -theory, contains K -theory and K -homology.
Ù Based on Hilbert C∗-modules = generalization of Hilbert spaces.
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K -theories: some properties
Theorem (Bo� periodicity)
For any C∗-algebra A, one has

K2(A) ' K0(A)

Ù Only two K -groups: K0(A) and K1(A).

Proposition (Six terms exact sequence)

For any short exact sequence of C∗-algebras 0 // I //A //A/I //0 ,
one has the six terms exact sequence

K0(I) // K0(A) // K0(A/I)
δ��

K1(A/I)
δ

OO

K1(A)oo K1(I)oo

Ù δ are index maps (as in Atiyah-Singer index theorem. . . ).

Proposition (Algebraic K -theory)

A a C∗-algebra: K alg
0 (A) = K0(A) and K alg

1 (A)→ K1(A) (not an isomorphism).

Worth mentioning Morita invariance also. . .
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Cyclic homology
A unital associative algebra.

Hochschild complex with values in A: A · · ·boo A⊗nboo A⊗n+1boo · · ·boo

b(a0 ⊗ · · · ⊗ an) =
n−1∑
p=0

(−1)pa0 ⊗ · · · ⊗ apap+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1

Hochschild homology: HH•(A) homology of this complex.

t : A⊗n → A⊗n cyclic operator: t(a1 ⊗ · · · ⊗ an) = (−1)n+1an ⊗ a1 ⊗ · · · ⊗ an−1.
b well-defined on Cλn (A) = A⊗n+1/Ran(1− t).
Cyclic homology: HC•(A) homology of (Cλ• (A), b).

Proposition (Connes long exact sequence)
There are morphisms I and S which induce the following long exact sequence

· · · //HHn(A)
I //HCn(A)

S //HCn−2(A)
B //HHn−1(A)

I // · · ·

For non unital algebras, need bicomplexes. . .
Cyclic cohomology is defined using Hochschild cohomology with values in A∗.
Ù similar operators I and S, and long exact sequence.
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Periodic cyclic (co)homology
Periodic cyclic cohomology: HP•(A) is defined using S.
Only 2 groups: HP0(A) = lim−→HC2n(A) and HP1(A) = lim−→HC2n+1(A).
In the same way, one can define the periodic cyclic homology: HP•(A).

Proposition (Six terms exact sequence)

For any short exact sequence of associative algebras 0 // I //A //A/I //0 ,
one has the six terms exact sequence

HP0(I) // HP0(A) // HP0(A/I)
δ��

HP1(A/I)
δ

OO

HP1(A)oo HP1(I)oo

Proposition (Di�eotopic invariance)
A and B two associative algebras. If ϕ0, ϕ1 : A→ B are di�eotopic, then they induce
the same morphism HPν(A)→ HPν(B).

ϕ : A→ B⊗ C∞([0, 1]) s.t. ϕt is ϕ0 (resp. ϕ1) at t = 0 (resp. t = 1)

Ù Does not work for homotopy!

Worth mentioning Morita invariance also. . .
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Cyclic homology: examples
Example A = C:

HH0(C) = C HHn(C) = 0 for n ≥ 1 HP0(C) = C HP1(C) = 0

Example A = C[z, z−1] (Laurent polynomials):
HP0(C[z, z−1]) = C HP1(C[z, z−1]) = C

Hochschild and cyclic homologies can be defined for topological algebras.

Example A = C(X), continuous functions on a compact space X :
HPcont

0 (C(X)) = {bounded measures on X} HPcont
1 (C(X)) = 0

M a finite dim. loc. compact manifold.
Example A = C∞(M), Fréchet algebra of smooth functions on M:

Theorem (Connes, 1985)

HHCont
• (C∞(M)) = Ω•C(M) (complexified de Rham forms)

HPcont
0 (C∞(M)) = Heven

dR (M) HPcont
1 (C∞(M)) = Hodd

dR (M)

Ù Cyclic homology is the NC generalization of de Rham cohomology.
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The Chern character
Theorem (The (geometric) Chern character)

The (usual) Chern character ch(E) = tr ◦ exp
(

iF
2π

)
realizes an isomorphism

ch : K 0(M)⊗Z Q '−→ Heven(M;Q)

for locally compact finite dimensional (smooth) manifolds M.
It can be extended to an isomorphism ch : K 1(M)⊗Z Q '−→ Hodd(M;Q).

Proposition (The (algebraic) Chern character)

The Chern character realizes a map ch : K alg
ν (A)→ HPν(A) for ν = 0, 1.

Ù Defined by the generators of HP0(C) = C and HP1(C[z, z−1]) = C.

The algebraic Chern character factorizes through K -theory of topological algebras.

Theorem (The (NC) Chern character)
For a large class of Fréchet algebras, the Chern character realizes an isomorphism

ch : Kν(A)⊗ C '−→ HPν(A)

Ù The Fréchet algebras C∞(M) for locally compact manifolds M are in this class.
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Pairing and Fredholm modules
A a topological algebra (Fréchet, pre-C∗, Banach).

We have introduced the Chern character as a map ch : Kν(A)→ HPν(A).

It is also a pairing Kν(A)× HPν(A)→ C.

It is also a map Kν(A)→ HPν(A), where Kν(A) is the K -homology of A.

Elements in K 1(A) are classes of (odd) Fredholm modules (A,H, F );
H is a Hilbert space which supports an involutive representation π of A;
F is a bounded operator onH such that F = F∗, F 2 = 1;
[F , π(a)] is compact for any a ∈ A;
then (Connes, 1985)

τ(a0, . . . , an) = Tr(a0[F , a1] · · · [F , an])

defines an element in HP1(A).
Need trace-class operators: “summability” of Fredholm modules.

Ù Scha�en ideals Lp(H) = {T ∈ B(H) / Tr(|T |p) <∞}.
Ù “Infinitesimals of order p in this quantum calculus” (Connes).

Remark
K -theory is a theory for NC topological spaces.
Periodic cyclic homology is a theory for algebras with “di�erentiable structures”.

15



An introduction to noncommutative geometry, Aix-en-Provence, June 26, 2014 Thierry Masson, CPT-Luminy

Spectral triples
Spectral triples are “unbounded Fredholm modules”.

A an involutive unital associative algebra.

Definition (Spectral triple)

A spectral triple on A is a triple (A,H,D) where

H is a Hilbert space on which an involutive representation ρ of A is given;

D is a (unbounded) self-adjoint operator onH;

the resolvant of D is compact;

[D, ρ(a)] is bounded for any a ∈ A.

Many more axioms for complete description:

Grading Ù charge conjugaison in physics.

Reality operator Ù Tomita-Takesaki theory.

Regularity condition
Ù defines the “smooth” algebra A as a dense subalgebra of a C∗-algebra

16



An introduction to noncommutative geometry, Aix-en-Provence, June 26, 2014 Thierry Masson, CPT-Luminy

Spectral triples (cont’d)

(A,H,D(1 +D2)−1/2) defines a Fredholm modules (except for F 2 = 1):
class in Kν(A);
element in HPν(A) by the Chern character;
Summability conditions on (A,H,D).

The operator D is called a Dirac operator.
Ù This comes from (A,H,D) = (C∞(M), L2(/S), /D) where

M is a smooth compact Riemannian spin manifold,
/S is a spin bundle,
/D is the usual Dirac operator.

Ù This is the commutative prototype of spectral triples.

Reconstruction theorem by Connes (2008):
Commutative spectral triples (with additional axioms) are of the form
(C∞(M), L2(/S), /D).

A spectral triple (A,H,D) encodes some metric properties of the “NC spaces”.
Ù distance on the space of states of A.

Behavior of the eigenvalues of |D|Ù dimension of the spectral triple.
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Di�erential structures

A an associative algebra.

Definition (Di�erential calculus on an algebra)

A di�erential calculus on A is a graded di�erential algebra (Ω•, d) such that Ω0 = A.

Ù Many di�erential calculi can be constructed on a given algebra.

Example (Universal unital di�erential calculus)
A a unital associative algebra.
(Ω•U(A), dU) is the free unital graded di�. alg. generated by A in degree 0.
Elements are finite sum of adUb1 · · · dUbn for a, b1, . . . , bn ∈ A.

Universal property: for any unital di�. calc. (Ω•, d) on A, there exists a unique
morphism of unital di�. calc. φ : Ω•U(A)→ Ω• (of degree 0) such that φ(a) = a for any
a ∈ A = Ω0

U(A) = Ω0.

Ù Many di�. calc. are quotients of (Ω•U(A), dU).
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Derivation based di�erential calculus
A an associative algebra with unit 1.

Z(A) = {a ∈ A / ab = ba,∀b ∈ A} its center.

Space of derivations of A:
Der(A) = {X : A→ A / X linear,X·(ab) = (X·a)b + a(X·b),∀a, b ∈ A}.

Ù Lie algebra: [X,Y]a = XYa−YXa for all X,Y ∈ Der(A),
Ù Z(A)-module: (f X)·a = f (X·a) for all f ∈ Z(A) and X ∈ Der(A).

Ω0
Der(A) = A.

Ωn
Der(A) space of Z(A)-mult. antisym. maps from Der(A)n to A, n ≥ 1.

Ω•Der(A) =
⊕

n≥0 Ωn
Der(A).

N-graded di�erential algebra (product by antisymmetrization):

d̂ω(X1, . . . ,Xn+1) =
n+1∑
i=1

(−1)i+1Xi·ω(X1, . . .
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1).

A = C∞(M) Ù (Ω•Der(A), d̂) is the de Rham calculus.
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Spectral triples and forms

(A,H,D) a spectral triple.

Any form ω =
∑

adUb1 · · · dUbn ∈ Ω•U(A) gives a bounded operator

πD(ω) =
∑

π(a)[D, π(b1)] · · · [D, π(bn)]

This is not a representation of the (Ω•U(A), dU) as a graded di�. alg.

Perturbation ofD by bounded operators does not change the K -homology class.
Ù D + πD(ω) in the same class.

Case (C∞(M), L2(/S), /D):
E → M vector bundle, ω connection 1-form on E

Ù “ /D + ω” is the twisted Dirac operator defined on /S ⊗ E .
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NC connections
A an associative algebra with unit 1. (Ω•, d) a di�. calc. on A.
M a finite projective right module over A.

Definition (NC connection)

A NC connection on M is a linear map ∇̂ : M → M ⊗A Ω1 such that
∇̂(ma) = (∇̂m)a + m⊗ da for any m ∈ M and a ∈ A.

∇̂ can be extended as ∇̂ : M ⊗A Ωp → M ⊗A Ωp+1, for any p ≥ 0, using the rule
∇̂(m⊗ ωp) = (∇̂m)⊗ ωp + m⊗ dωp for any ωp ∈ Ωp.

Definition (Curvature)

The curvature of ∇̂ is defined as R̂ = ∇̂2 = ∇̂ ◦ ∇̂ : M → M ⊗A Ω2.
It satisfies R̂(ma) = (R̂m)a for any m ∈ M and a ∈ A

Definition (Gauge transformations)
G the group of automorphisms of M as a right A-module.
For any Φ ∈ G, ∇̂Φ = Φ−1 ◦ ∇̂ ◦ Φ is also a NC connection on M.

A = C∞(M) Ù usual theory of connections on vector bundles M = Γ(E).
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NC connections: special case M = A
Special example of right module: M = A.

Since A is unital: ∇̂(a) = ∇̂(1a) = ∇̂(1)a + 1⊗ da = ∇̂(1)a + da.

∇̂(1) = ω ∈ Ω1 characterizes completely ∇̂.

ω is the NC connection 1-form.

The curvature of ∇̂ is the le� multiplication by the 2-form Ω = dω + ωω ∈ Ω2.

Φ ∈ G is completely determined by Φ(1) = g ∈ A (invertible element).

Gauge transformation of ∇̂:
ω 7→ g−1ωg + g−1dg, Ω 7→ g−1Ωg.

Ù This permits to construct NC gauge field theories:

Need an appropriate Lagrangian Ù di�erent approaches.

For A = C∞(M)⊗ AF where AF = finite dim. alg. ' Mn(C), CN . . .
Ù NC connections split in two parts:

geometric along C∞(M) Ù “ordinary” gauge field (Yang-Mills).
algebraic along AF Ù new fields ' scalar fields of the Higgs mechanism.
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NC connections and spectral triples
Definition
Two spectral triples (A,H,D) and (A′,H′,D′) are unitary equivalent if there exists
a unitary operator U : H → H′ and an algebra isomorphism φ : A→ A′ such that
π′ ◦ φ = UπU−1, D′ = UDU−1.

Inner fluctuations:
CaseH′ = H, A′ = A, π′ = π and φu(a) = u›au for a unitary u ∈ U(A).
Ù Then U = π(u)›.

D is transformed as Du = UDU−1 = D + π(u)›[D, π(u)].
Let ω ∈ Ω1

U(A) be a NC connection 1-form for the module M = A.
Interpret u ∈ U(A) as a (unitary) gauge transformation.
ωu = u›ωu + u›du
πD(ω

u) = π(u)›πD(ω)π(u) + π(u)›[D, π(u)].
Define Dω = D + πD(ω), then

(Dω)u = Dωu (= D + π(u)›πD(ω)π(u) + π(u)›[D, π(u)])

To compensate the action of inner symmetries onD,
a NC connection is necessary.

Ù Implementation of the gauge principle.
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NC torus
θ a real number.

On the Hilbert space L2(S1), consider the two unitary operators
(Uf )(t) = e2πit f (t) (Vf )(t) = f (t − θ)

where f : S1 → C is a periodic function in the variable t ∈ R.

Then UV = e2πiθVU ∈ B(L2(S1)).

Aθ the C∗-algebra generated by U and V in B(L2(S1)) Ù NC torus.

Suppose θ is irrational:
Aθ is the irrational rotation algebra.
It is simple and universal for the relation UV = e2πiθVU.

Aθ = A1−θ .

α : S1 → S1, z 7→ e2iπθz Ù action of Z on C(S1)

Ù Aθ = C(S1) oα Z (cross product C∗-algebra).

Aθ is also associated to the Kronecker foliation dx = θdy of the 2-torus.

Finite projective modules are classified by two integers (p, q) s.t. p + qθ ≥ 0.
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NC torus: smooth structures

S(Z2) the Schwartz space of sequences (am,n)m,n∈Z of rapid decay:
(|m|+ |n|)q|am,n| is bounded for any q ∈ N.

A∞θ = elements in Aθ of the form
∑

m,n∈Z am,nUmV n for (am,n)m,n∈Z ∈ S(Z2).

By Fourier analysis S(Z2) ' C∞(T2).
Ù A∞θ is the space of “smooth functions on the NC torus”.

pq(a) = supm,n∈Z{(1 + |m|+ |n|)q|am,n|} is a family of semi-norms on A∞θ .
Ù Fréchet algebra.

A∞θ has two derivations:
δ1(Um) = 2πimUm, δ1(V n) = V n,

δ2(Um) = Um, δ2(V n) = 2πinV n

τ
(∑

m,n∈Z am,nUmV n
)

= a0,0 is a trace (unique, extends to Aθ).

Spectral triple:
A = A∞θ ,
H = (Hilbert space of the GNS representation associated to τ )⊗C2,
D =

( 0 δ1+iδ2
δ1−iδ2 0

)
.
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NC torus: homologies
Let λ = exp(2πiθ).
Diophantine condition: there exists an integer k such that |1− λn|−1 is O(nk).

Theorem (Connes, 1985)
If λ satisfies some diophantine condition:

HHCont
0 (A∞θ ) = C HHCont

1 (A∞θ ) = C2

For any λ:
HHCont

2 (A∞θ ) = C HHCont
n (A∞θ ) = 0 for n ≥ 3

If λ does not satisfy some diophantine condition:
HHCont

0 (A∞θ ) and HHCont
1 (A∞θ ) are infinite dimensional.

For any λ:
HPcont

0 (A∞θ ) = C2 HPcont
1 (A∞θ ) = C2

Theorem
For any θ irrational,

K0(A∞θ ) = K0(Aθ) = Z2 ' θZ + Z, K1(A∞θ ) = K1(Aθ) = Z2
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