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How to construct a gauge field theory?

The basic ingredients are:
@ A space of local symmetries (space-time dependence): a gauge group.
@ Animplementation of the symmetry on matter fields: a representation theory.
@ A notion of derivation: some differential structures.
@ A (gauge compatible) replacement of ordinary derivations: covariant derivative.

@ A way to write a gauge invariant Lagrangian density: action functional.
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How to construct a gauge field theory?

The basic ingredients are:
@ A space of local symmetries (space-time dependence): a gauge group.
@ Animplementation of the symmetry on matter fields: a representation theory.
@ A notion of derivation: some differential structures.
@ A (gauge compatible) replacement of ordinary derivations: covariant derivative.

@ A way to write a gauge invariant Lagrangian density: action functional.

Presentation of three mathematical schemes to construct gauge field theories:
@ Ordinary differential geometry of principal fiber bundles.
@ Noncommutative geometry.

@ Transitive Lie algebroids.

Point 5 will not be covered...
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Connections in differential geometry

Let P =5 M be a G-principal fiber bundle and g the Lie algebra of G.
R, the right action of g € G on P

Connection on P: 1-formw € Q'(P) ® g such that:
w(é—P) = ga vé- S g, R;w = Adg—w.), Vg cG

Curvature: Q = dw + 1[w,w] € P*(P) ®g.

Transfer this connection on any associated vector bundle &:
Covariant derivative: X € ['(TM) =>» Vy : ['(€) — [(€) (smooth sections of £).
Vx(fe) = (X-f)e + fVxe, and other relations...

=> This is the minimal coupling in physics.
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Three levels of description

Globally on P: w € Q'(P) ® g connection 1-form on P, Q its curvature.
w € Q'(P) ® g, equivariant + vertical condition.
Q € Q*(P) @ g, equivariant + horizontal.
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Three levels of description

Globally on P: w € Q'(P) ® g connection 1-form on P, Q its curvature.
w € Q'(P) ® g, equivariant + vertical condition.
Q € Q*(P) @ g, equivariant + horizontal.

=> Preferred description for mathematicians...

Locally on M: (U, ¢) local trivialisation of P with ¢ : U x G — Py,
s its local section, s(x) = ¢(x, e).
Local expressions of the connection and the curvature:
A=s'weQ'(U)®g F=s"QeQ*(U)®g
(Ui, ¢i) and (U;, ¢;) two local trivialisations. gj : U; N U; # @ — G transition
functions:
A =g 'Ag +g; ' dg F =g 'Figi
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and horizontal, defines a section I of /\ZT*M ® AdP.
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The family {A;}; is not associated to an algebraic object globally defined on M.
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Three levels of description

Globally on P: w € Q'(P) ® g connection 1-form on P, Q its curvature.
w € Q'(P) ® g, equivariant + vertical condition.
Q € Q*(P) @ g, equivariant + horizontal.

=> Preferred description for mathematicians...
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=> Preferred description for physicists...

Globally on M: The family {F;}; with its homogeneous gluing relations, or 2 equivariant
and horizontal, defines a section I of /\ZT*M ® AdP.
The family {A;}; is not associated to an algebraic object globally defined on M.

=> Preferred description for me...



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy
Ordinary differential geometry

Covariant derivatives and algebraic structures

M smooth manifold, (2°(M), d) de Rham differential calculus on M.
£ avector bundle on M.
M = T'(&) the space of smooth sections of £.

Covariant derivative on £: linear map
VM — Q' (M) Qcoo () M such that V(fe) =df ® e +fVe
foranye € Mandf € C®°(M).
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Covariant derivatives and algebraic structures

M smooth manifold, (2°(M), d) de Rham differential calculus on M.
£ avector bundle on M.
M = T'(&) the space of smooth sections of £.
Covariant derivative on £: linear map
VM — Q' (M) Qcoo () M such that V(fe) =df ® € + fVe
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defined by
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V2 M — Q2 (M) Qcoe () M
=> 2-form IF on M with values in AdP C End(&) = £* ® € (modulo rep.).
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Covariant derivatives and algebraic structures

M smooth manifold, (2°(M), d) de Rham differential calculus on M.
£ avector bundle on M.
M = T'(&) the space of smooth sections of £.

Covariant derivative on £: linear map
VM — Q' (M) Qcoo () M such that V(fe) =df ® e +fVe
foranye € Mandf € C®°(M).

Natural extension:
V:Q*(M) Qcoo(pm)y M — Q.+1(M) Qcoo(rm) M
defined by
Vin®e)=dn®e+(—1)nAVe forany n € Q"(M).

Curvature: the C°°(M)-linear map
V2 M — Q2 (M) Qcoe () M
=> 2-form IF on M with values in AdP C End(&) = £* ® € (modulo rep.).

=> This can be generalized...
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Ordinary differential geometry

Assets and problems of ordinary gauge field theories

@ They are the prototype of theories used in the standard model of particle physics.
@ The mathematical structures are now accustomed and popular.

@ The gauge theories obtained are massless gauge theories.
=> Require the symmetry breaking mechanism to generate masses in the SM.
=> Higgs boson discovered: not a bad theoretical idea after all...
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Noncommutative geometry

Noncommutative geometry

Q Noncommutative geometry
@ Derivation-based differential calculus
@ Noncommutative connections and their properties
@ The endomorphism algebra of a vector bundle
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Nonc ative g ry

The main noncommutative concepts

@ Study geometric structures using equivalent algebraic structures.
@ Replace commutative algebras of functions by noncommutative algebras.

@ There is not a unique way to generalize key geometrical structures.
=> Several approaches to NCG:

o Spectral triple (Connes’ approach),

o Quantum groups and covariant differential calculi,

o Derivation-based noncommutative differential calculus (Dubois-Violette)...
=> The one used in the following.
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Nonc ative g ry Derivation-based differential calculus

Derivations of an associative algebra

A associative algebra with unit.
Z(A) center of A: commutative subalgebra.

Vector space of derivations of A:
Der(A) = {X : A — A/ X linear, X(ab) = X(a)b + aX(b),Va,b € A}

Structure of Der(A): One has
@ Der(A) is a Lie algebra for the bracket [X,]a = XYa — DXa,
@ Der(A): Z(A)-module for the product (fX)a = f(Xa),
@ Int(A) = {ad, : b+ [a,b] /a € A} C Der(A), inner derivations:
Lie ideal and Z(A)-submodule,
@ Out(A) = Der(A)/Int(A) =» s.ess. of Lie algebras and Z(A)-modules
0—>Int(A)—>Der(A)—=Out(A)—=0
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Nonc ative g ry Derivation-based differential calculus

Derivation-based differential calculus

A associative algebra with unit.
o Q7 (A) the space of Z(A)-multilinear antisymmetric maps from Der(A)" to A,
with Q% (A) = A
Qser(A) = @nzo Qger(A)

@ N-graded algebra for the product
(wn) (X1, ..., Xpiq) =

1 |
plq! Z (=) Ow(Xoqy, - - Xo) )N Eop1)s - - > Xa(pta))
o 0€6p
o differential graded algebra for the differential d defined by
n+1

dOJ(fh e ,xn+1) = Z(—‘I);-H%,'OJ(:{M o0 ¥ ooo 7%H+1)

i=1

+ Y () H([E XYY, Ea)

1<i<j<n+1
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Nonc ative g ry Noncommutative connections and their properties

Noncommutative connections

M a right A-module (representation space).

Noncommutative connection: linear map Vx : M — M, defined for any X € Der(A),
such that VX, 9) € Der(A), Va € A,Vm € M, ¥f € Z(A):
Vx(ma) = m(Xa) + (Vzm)a,
6;4_3)”1 = 635”’1 + ﬁgjm,
Vizm = (Vem)f

Curvature: linear map R(X,2)) : M — M defined for any X,9) € Der(A) by
R(X,9)m = [Vzx, V;y]m = V[x’@]m
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Nonc ative g ry Noncommutative connections and their properties

Gauge transformations, Hermitean structure

M aright A-module.

Gauge group of M:
G = Aut(M), the group of automorphisms of M as a right A-module.

Gauge transformations: For any ® € G and any n.c. connection v,
ve :¢71o§3€o¢:M—>M
is a noncommutative connection.
=> action of G on the space of noncommutative connections.
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Nonc ative g ry Noncommutative connections and their properties

Gauge transformations, Hermitean structure

M aright A-module.

Gauge group of M:
G = Aut(M), the group of automorphisms of M as a right A-module.

Gauge transformations: For any ® € G and any n.c. connection v,
ve :¢71o§xo¢:M—>M
is a noncommutative connection.
=> action of G on the space of noncommutative connections.

When A is an involutive algebra, notion of Hermitean structure:
@ (— —):MxM—A,
@ Hermitean n.c. connections,

@ Unitary gauge transformations.
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Nonc ative g ry Noncommutative connections and their properties

Noncommutative connections for M = A

Special case: the right A-module M = A and A has a unit 1.

Vx : A — Abean.c. connection.

o V completely given by V1 = w(%) withw € Qp. (A):
Vxa=Xa+ w(X)a

e Curvature of V: multiplication on the left on A by the n.c. 2-form
QX,9) = dw(X,9) + [w(X), w(D)]
@ Gauge group: identified with invertible elements g € A by ®,(a) = ga.

e Gauge transformations on V:
wwf =g lwg+g'dg Q— B =g "Qg

@ VY% = Xaisan.c. connection on A with vanishing curvature, w = 0.

=> Replace v by an algebraic object: connection 1-form.
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Nonc ative g ry Noncommutative connections and their properties

Noncommutative connections for M = A

Special case: the right A-module M = A and A has a unit 1.
ﬁx : A — A bean.c. connection.

o V completely given by V1 = w(%) withw € Qp. (A):

Vxa=Xa+ w(X)a
e Curvature of V: multiplication on the left on A by the n.c. 2-form
QX,Y) = dw(X,9) + [w(X), w(D)]
@ Gauge group: identified with invertible elements g € A by ®,(a) = ga.

e Gauge transformations on V:
wwf =g lwg+g'dg Q— B =g "Qg

@ VY% = Xaisan.c. connection on A with vanishing curvature, w = 0.

=> Replace v by an algebraic object: connection 1-form.

If A is involutive, hermitean structure: (a, b) = a*b.
U(A) = {u € A/ u*u = uu* = 1} is the unitary gauge group.
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Nonc ative g ry The endomorphism algebra of a vector bundle

A = C®(M)

A = C°°(M) (complex valued), for a smooth compact manifold M.
Involutive algebra for the complex conjugation.

e Z(A) =C®(M).

@ Der(A) = I'(TM) (complex vector fields on M).
@ Int(A) =o.

@ Out(A) = I(TM).

o Q3. (A) = Q°*(M), de Rham forms on M.

@ N.C. connections are ordinary connections.
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Nonc ative g ry The endomorphism algebra of a vector bundle

A = M,(C)

A = M,(C) = M,, finite dimensional algebra of n x n complex matrices.
Involutive algebra for the adjointness of matrices.

e Z(M,)=C.

@ Der(M,) = Int(M,)) =~ sl, = sl(n, C) (traceless matrices)
sl,(C) 3 v — ady € Int(M,).

@ Out(M,) =o0.

L Qser(M") = M" ® /\.5[:'
differential d’ = Chevalley-Eilenberg for sl,, represented on M,, by ad.

e Canonical 1-form if € Q..(M,) such that for any y € M, (C)
if(ad,) =y — 3 Tr(7)1

o V%a = Xa — if(X)a is a gauge invariant connection on M = A with zero curvature.
=> Important role in gauge field theories...
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ative g ry The endomorphism algebra of a vector bundle

A = C®(M) ® M,(C)

Mix of previous examples: A = C*°(M) ® M, (C), matrix valued functions on M.

Z(A) = C°(M).
Der(A) = [Der(C*(M)) @ 1] @ [C>(M) ® Der(M,)]
=T(TM) @ [C°>°(M) & sl,] as Lie algebras and C°° (M )-modules.
X =X+ad, forX € [(TM)andy € C°(M) ®sl, = A (traceless elements in A).
Int(A) = Ag and Out(A) = (T M).
Q8..(A) = Q°(M) @ Q8 (M) withd = d + .

N.C. 1-form if) defined as if(X + ad,) = v € A C A.
It splits the short exact sequence
i0
—
0—>A,—>Der(A)—T(TM)—=0

Gauge fields models of Yang-Mills-Higgs type:
Yang-Mills in the geometric direction, Higgs (scalar fields) in the algebraic direction.
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Nonc ative g ry The endomorphism algebra of a vector bundle

The endomorphism algebra

M smooth locally compact manifold.
SU(n)-principal fiber bundle P.

£ associated vector bundle with fiber C".
End(€) fiber bundle of endomorphisms of £.

A the algebra of smooth sections of End ().



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy

Nonc ative g ry The endomorphism algebra of a vector bundle

The endomorphism algebra

M smooth locally compact manifold.
SU(n)-principal fiber bundle P.

£ associated vector bundle with fiber C".
End(€) fiber bundle of endomorphisms of £.

A the algebra of smooth sections of End ().
“Trivial case”: £ = M x C"=>» A = C®°(M) @ M,
In general, A is (globally) more complicated.
Using trivialisations of &, the algebra A looks locally as C*°(U) @ M,
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Nonc ative g ry The endomorphism algebra of a vector bundle

The endomorphism algebra

M smooth locally compact manifold.
SU(n)-principal fiber bundle P.

£ associated vector bundle with fiber C".
End(€) fiber bundle of endomorphisms of £.

A the algebra of smooth sections of End ().
“Trivial case”: £ = M x C"=>» A = C®°(M) @ M,
In general, A is (globally) more complicated.
Using trivialisations of &, the algebra A looks locally as C*°(U) @ M,

e Z(A) =C®(M).
@ Involution, trace map and determinant (Tr, det : A — C>°(M)) well defined.

@ SU(A) the unitaries in A of determinant 1,
su(A) the traceless antihermitean elements:
G = SU(A) is the gauge group of P
LieG = su(A) is the Lie algebra of the gauge group
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Nonc ative g ry The endomorphism algebra of a vector bundle

Derivations and differential calculus

p : Der(A) — Der(A)/Int(A) = Out(A) the projection.
@ Out(A) >~ Der(C®(M)) = T(TM).
p is the restriction of X € Der(A) to Z(A) = C*°(M).
@ Int(A) is isomorphic to Ay, the traceless elements in A.

@ The s.es. of Lie algebras and C°°(M)-modules of derivations looks like

0—> A; = Der(A) -2 T(TM) —0

@ There is no a priori canonical splitting in the non trivial case.

@ The “n.c. 1-form” il cannot be defined here.
But one can define a map of C°°(M)-modules:
i : Int(A) — Ag ad, — v — 1Tr(y)1

n



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy
Nonc ative g ry

The endomorphism algebra of a vector bundle

Connectionson &€

V¢ any (ordinary) SU(n)-connection on €.
Associated connections: V€~ on £* and V on End(€) = £* ® &.
Notation X = p(X) € I'(TM) for any X € Der(A).
@ [(TM) 3 X+ Vx € Der(A).
=> X — Vy is a splitting as C>°(M)-modules of the s.ess.
P
0—A,—>Der(A)—T(TM)—0
@ The obstruction to be a splitting of Lie algebras is the curvature of V:
R(X,Y) = [Vx, Vy] — V[X,Y]-

20
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Nonc ative g ry The endomorphism algebra of a vector bundle

Connectionson &€

V¢ any (ordinary) SU(n)-connection on €.
Associated connections: V€~ on £* and V on End(€) = £* ® &.
Notation X = p(X) € I'(TM) for any X € Der(A).
@ [(TM) 3 X+ Vx € Der(A).
=> X — Vy is a splitting as C>°(M)-modules of the s.ess.

« v
L

0—>Ay—>Der(A)—=T (TM)—=0

@ The obstruction to be a splitting of Lie algebras is the curvature of V:
R(X,Y) = [Vx, Vy] — v[><,Y]-

@ X — Vy € Int(A) forany X € Der(A).

o X a(X) = —if(X — Vx)isanc 1-form a € QF,.(A).
X = Vx —ady(x), VX € Der(A) a(ad,) = —v, Yy € Ag

20
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Nonc ative g ry The endomorphism algebra of a vector bundle

Connectionson &€

V¢ any (ordinary) SU(n)-connection on €.
Associated connections: V€~ on £* and V on End(€) = £* ® &.
Notation X = p(X) € I'(TM) for any X € Der(A).
@ [(TM) 3 X+ Vx € Der(A).
=> X — Vy is a splitting as C>°(M)-modules of the s.ess.

« v
L

0—>Ay—>Der(A)—=T (TM)—=0

@ The obstruction to be a splitting of Lie algebras is the curvature of V:
R(X,Y) = [Vx, Vy] — v[><,Y]-

@ X — Vy € Int(A) forany X € Der(A).
o X a(X) = —if(X — Vx)isanc 1-form a € QF,.(A).
X = Vx —ady(x), VX € Der(A) a(ad,) = —v, Yy € Ag

SU(n)-connection V€ =» n.c. 1-form as.t. a(ad, ) = —.
Identification of curvature and gauge transformations.

20
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Nonc ative g ry The endomorphism algebra of a vector bundle

Noncommutative connectionson M = A

M = A with Hermitean structure (a, b) — a*b.

w € QL. (A) = V¥ n.c. connection defined by @%a = Xa + w(X)a.

21
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Nonc ative b4 ry The endomorphism algebra of a vector bundle

Noncommutative connectionson M = A

M = A with Hermitean structure (a, b) — a*b.
w € QL. (A) = V¥ n.c. connection defined by an = Xa + w(X)a.

VEon&=> Vonknd(&) = a € QL. (A) = ¥V n.c. connection.

Theorem (Ordinary connections as noncommutative connections)

@ The space of n.c. connections on the right module A compatible with the Hermitean
structure (a, b) — a*b contains the space of ordinary SU(n)-connections on £.

@ This inclusion is compatible with the corresponding definitions of curvature and
gauge transformations.
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Nonc ative g ry The endomorphism algebra of a vector bundle

Noncommutative connectionson M = A

M = A with Hermitean structure (a, b) — a*b.
w € QL. (A) = V¥ n.c. connection defined by an = Xa + w(X)a.

VEon&=> Vonknd(&) = a € QL. (A) = ¥V n.c. connection.

Theorem (Ordinary connections as noncommutative connections)

@ The space of n.c. connections on the right module A compatible with the Hermitean
structure (a, b) — a*b contains the space of ordinary SU(n)-connections on £.

@ This inclusion is compatible with the corresponding definitions of curvature and
gauge transformations.

@ «isa globally defined algebraic object on M corresponding to the family {A;};.

@ What are n.c. connections from a physical point of view?
Their n.c. part can be interpreted as scalar Higgs fields in (natural) models.
=» Spontaneous symmetry breaking mechanism, mass generation...
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Nonc ative g ry The endomorphism algebra of a vector bundle

Assets and problems of n.c. gauge field theories

@ The gauge theories obtained in NCG are very diverse:
Many approaches to NCG...
Many algebras can be considered...
=> Gauge field theories can be realistic or exotic.

@ Many of these theories are of Yang-Mills-Higgs type.
=> The n.c. standard model by Chamseddine, Connes and Marcolli.

@ The gauge group is the group of automorphisms of a right module.
=> Not all Lie groups are accessible, for instance U(1)...

@ The mathematical structures can be very involved.
=> Spectral triples require a lot of mathematical skill.
=> Not convenient to explore new models related to particle physics...
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Transitive Lie algebroids

Transitive Lie algebroids

© Transitive Lie algebroids

@ Generalities on Lie algebroids
Examples, representation theory
Differential structures
Connections

°
°
°
@ Gauge transformations

23



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy
Transitive Lie algebroids Generalities on Lie algebroids

Lie algebroids: the algebraic point of view

@ Lie algebroids are usually considered as generalizations of the tangent bundle.

@ Here the geometric structure is ignored in favor of the algebraic structure, as in NCG.
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Transitive Lie algebroids Generalities on Lie algebroids

Lie algebroids: the algebraic point of view

@ Lie algebroids are usually considered as generalizations of the tangent bundle.

@ Here the geometric structure is ignored in favor of the algebraic structure, as in NCG.

M a smooth manifold.
I'(TM) the Lie algebra and C>°(M)-module of vector fields.

Definition given in the “language” of algebras and modules:
A Lie algebroid A is:

@ a finite projective module over C*°(M),

@ equipped with a Lie bracket [—, —],

@ equipped with a C>°(M)-linear Lie morphism p : A — (T M) such that
[X./2] =f[X.D] + (o(X)£) D
forany X,2) € Aandf € C>*(M).
p is the anchor map.
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Transitive Lie algebroids Generalities on Lie algebroids

Transitive Lie algebroids

A Lie algebroid A % [(TM) is transitive if p is surjective.
@ L = Ker pis a Lie algebroid with null anchor on M.

@ The vector bundle £ such that L = ['(£) is a locally trivial bundle in Lie algebras.
=> gives the Lie structure on L.

@ One has the s.es. of Lie algebras and C°°(M)-modules

L P

0 L A r(Tm) 0

@ Lis called the kernel of A.

This s.e.s. is the key structure for various considerations.
Think about it as an infinitesimal version of a principal fiber bundle

G——>P—">M
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Transitive Lie algebroids Examples, representation theory

Example 1: Derivations of a vector bundle

£ avector bundle over M.
End(€) the fiber bundle of endomorphisms of £, A(€) = '(End(£)).

D (&) the space of first-order differential operators on £ with scalar symbols.
o :D(&) — I(TM) the symbol map.

0 A(E)——=D(&)—Z=T(TM)—=0

is the transitive Lie algebroid of derivations of £.

Remark: A(&) is the endomorphism algebra of £ defined before...
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Transitive Lie algebroids Examples, representation theory

Representation of a Lie algebroid

A £ T(TM) a Lie algebroid and € — M a vector bundle.

A representation of A on & is a morphism of Lie algebroids ¢ : A — D(&).
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Representation of a Lie algebroid

A £ T(TM) a Lie algebroid and € — M a vector bundle.

A representation of A on & is a morphism of Lie algebroids ¢ : A — D(&).

When A is transitive, one has the commutative diagram of exact rows:
0 P

0 L A r(Tm) ——=o0
o s H
0 A(f) ——=D(&) —Z=T(TM) —=0

¢ : L — A(&) is a morphism of Lie algebras.
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Representation of a Lie algebroid

A £ T(TM) a Lie algebroid and € — M a vector bundle.

A representation of A on & is a morphism of Lie algebroids ¢ : A — D(&).

When A is transitive, one has the commutative diagram of exact rows:

0 L——sA—L ST (TM)—>0
o s |
0 A(f) ——=D(&) —Z=T(TM) —=0

¢ : L — A(&) is a morphism of Lie algebras.

Reminder:
@ Principal fiber bundles: representation theory is played by associated vector bundles.

@ Noncommutative geometry: representation theory is played by modules.
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Transitive Lie algebroids Examples, representation theory

Example 2: Atiyah Lie algebroids
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Transitive Lie algebroids Examples, representation theory

Example 2: Atiyah Lie algebroids
P 5 M a G-principal fiber bundle, g the Lie algebra of G.
Rg : P — P, Rg(p) = p-g, the right action of G on P.
M6(TP) ={X € (TP) /R, X = Xforallg € G}

Fe(P,g) ={v:P— g/v(p-g) = Adg-1v(p) forallg € G}
Both are Lie algebras and C°°(M)-modules.
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Example 2: Atiyah Lie algebroids

P 5 M a G-principal fiber bundle, g the Lie algebra of G.
Rg : P — P, Rg(p) = p-g, the right action of G on P.

M6(TP) ={X € (TP) /R, X = Xforallg € G}
Fe(P,g) ={v:P—g/v(pg) = Adg-v(p) forallg € G}
Both are Lie algebras and C°°(M)-modules.
I'c(TP) is the space of ..-projectable vector fields in [ (TP) =» 7, : [6(TP) — '(TM).

L:Te(P,g) = Tc(TP) definedby (v)), = v(p)r; = (jtpexp(tv(p)))

|t=0
g > v — v the fundamental vector field on P.
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Example 2: Atiyah Lie algebroids

P 5 M a G-principal fiber bundle, g the Lie algebra of G.
Rg : P — P, Rg(p) = p-g, the right action of G on P.

M6(TP) ={X € (TP) /R, X = Xforallg € G}
Fe(P,g) ={v:P—g/v(pg) = Adg-v(p) forallg € G}
Both are Lie algebras and C°°(M)-modules.
I'c(TP) is the space of ..-projectable vector fields in [ (TP) =» 7, : [6(TP) — '(TM).

L:Te(P,g) = Tc(TP) definedby (v)), = v(p)r; = (jtpexp(tv(p)))

|t=0
g > v — v the fundamental vector field on P.

This induces a s.e.s. of Lie algebras and C°° (M )-modules
0——=T(P, g)——>T(TP)——=T(TM)—=o0.
['c(TP) is the Atiyah (transitive) Lie algebroid associated to P.

The representations of ['¢(TP) are given by the associated vector bundles to P.
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Example 2: Atiyah Lie algebroids

P 5 M a G-principal fiber bundle, g the Lie algebra of G.
Rg : P — P, Rg(p) = p-g, the right action of G on P.

M6(TP) ={X € (TP) /R, X = Xforallg € G}
Fe(P,g) ={v:P—g/v(pg) = Adg-v(p) forallg € G}
Both are Lie algebras and C°°(M)-modules.
I'c(TP) is the space of ..-projectable vector fields in [ (TP) =» 7, : [6(TP) — '(TM).

L:Te(P,g) = Tc(TP) definedby (v)), = v(p)r; = (jtpexp(tv(p)))

=0
g > v — v the fundamental vector field on P. |
This induces a s.e.s. of Lie algebras and C°° (M )-modules

0——>Tg(P, g)——>To(TP)——=T(TM)—>0.
['c(TP) is the Atiyah (transitive) Lie algebroid associated to P.
The representations of ['¢(TP) are given by the associated vector bundles to P.

Atiyah Lie algebroids permit to embed ordinary gauge theories in this framework.
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Transitive Lie algebroids Examples, representation theory

Example 3: Trivial Lie algebroids

Trivial Lie algebroid = Atiyah Lie algebroid of a trivial principal bundle ? = M x G.
Compact notation: TLA(M, g) = A =T(TM @ (M X g)).
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Transitive Lie algebroids Examples, representation theory

Example 3: Trivial Lie algebroids

Trivial Lie algebroid = Atiyah Lie algebroid of a trivial principal bundle ? = M x G.
Compact notation: TLA(M, g) = A =T(TM @ (M X g)).

Proposition

Every transitive Lie algebroid A is locally of the form TLA(U, g) fortd C M open subset.

Trivialization of an Atiyah Lie algebroid <— Trivialization of the principal fiber bundle.
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Transitive Lie algebroids Differential structures

Differential forms: general definition

0 I—t A2 I'(TM)——0 a transitive Lie algebroid.

@ : A — D(&) arepresentation of A on £.
@ Forp=0:Q%A, &) =T(&).

@ Forp > 1: QP(A, €) the linear space of C>° (M )-multilinear antisymmetric maps
from AP to ['(€).
o O*(A,£) = D,5, (A, ) is equipped with the differential

p+1

(o) (Xrs oo, Xpir) = S (TGN B(Er, ¥ o Bpyn)

i=1

P Z ’+]w [x,,fX] 31,...\./...Y...,%p+1)
1<i<j<p+1
@(X)-p is the action of the first order diff. op. ¢(X) on ¢ € ['(€).

~2
e d, = 0(¢isamorphism of Lie algebras).
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Transitive Lie algebroids Differential structures

Differential forms: two examples

Let & = M x C, then [(€) = C®(M).
The anchor map p is a representation of A on C°°(M).

Forms with values in C*°(M): (2°(A), d,) is the graded commutative differential
algebra of forms on A with values in C°° (M) associated to the representation p.
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Transitive Lie algebroids Differential structures

Differential forms: two examples

Let & = M x C, then [(€) = C®(M).
The anchor map p is a representation of A on C°°(M).

Forms with values in C*°(M): (2°(A), d,) is the graded commutative differential
algebra of forms on A with values in C°° (M) associated to the representation p.

& = L the vector bundle such that L = I'(£).
For X € Aand ¢ € L, define adx(¢) € Lsuch that c(adx(¢)) = [X, ¢(£)].
This is the adjoint representation of A on L.

~

Forms with values in the kernel: (Q2°(A,L),d) is the graded differential Lie algebra of
forms on A with values in the kernel L associated to the adjoint representation.
=> graded Lie algebra and graded differential module on °(A).
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Transitive Lie algebroids Differential structures

Differential forms on trivial Lie algebroids

A = TLA(M, g) a trivial Lie algebroid.

Q°(A) is the total complex of the bigraded commutative algebra Q°*(M) ® A°g*.
HA =d + s with

d: (M) AN°g" = QM) A\°g* de Rham differential

s: QM) A°g" = QM) A\ g Chevalley-Eilenberg differential
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Transitive Lie algebroids Differential structures

Differential forms on trivial Lie algebroids

A = TLA(M, g) a trivial Lie algebroid.

Q°(A) is the total complex of the bigraded commutative algebra Q°*(M) ® A°g*.
HA =d + s with

d: (M) AN°g" = QM) A\°g* de Rham differential

s: QM) A°g" = QM) A\ g Chevalley-Eilenberg differential

Q°(A, L) is the total complex of the bigraded Lie algebra Q°*(M) @ \°g* @ g.
d = d + s with s’ the Chevalley-Eilenberg differential on A*g* ® g (for the ad rep.).

Compact notation: (2% A(M, g), dria) = (2°(A, L), d).
They are models for trivializations of forms on any transitive Lie algebroid.
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Transitive Lie algebroids Differential structures

Differential forms on Atiyah Lie algebroids

A the Atiyah Lie algebroid of a G-principal fiber bundle P = M.
Compact notation: Q7. (P, g) = Q°(A, L).

Gequ = {67 B E/E € g} CTLA(P,g) =T(TP & (P x g))

is a Lie algebra, which defines a Cartan operation on (Q3.A(P, g), dri).

(AP, 9) geqes ETLA) the differential graded subcomplex of basic elements.

Theorem (S. Lazzarini, T.M.)

IfG is connected and simply connected then R
(25e(P, g), d) is isomorphic to (27,4(P; 8) > d1i4)

= Q(P,g) C Qa(P9) 2 (P) 2 N\'g" @0
When G is connected and simply connected, a form can be described as:
@ a gequ-basic elements in QF A (P, g);
@ aformin Q%.(P,9);

@ afamily of local trivializations in Q3 A(U, g) with gluing relations.
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Transitive Lie algebroids Connections

Ordinary connections on transitive Lie algebroids

L P

0 L A I'(TM)——0 a transitive Lie algebroid.

Connection on a transitive Lie algebroid: splittingV : [(TM) — A as
C*°(M)-modules of the s.es.

AV
0 L—=AZ =T (TM) 0

Curvature: obstruction to be a morphism of Lie algebras:
R(X,Y) = [Vx, Vy] = Vxy € ¢(L)
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Transitive Lie algebroids Connections

Ordinary connections on transitive Lie algebroids

L P

0 L A I'(TM)——0 a transitive Lie algebroid.

Connection on a transitive Lie algebroid: splittingV : [(TM) — A as
C*°(M)-modules of the s.es.

W~ v
01X AL ST (TM)—0

Curvature: obstruction to be a morphism of Lie algebras:
R(X,Y) = [Vx, Vy] = Vxy € ¢(L)

X=Vx—1ow (%)

o w € Q'(A,L)and W o(f) = —Lforany ¢ € L (normalization on L).
o F(X,9) = (dJ)(X,9) + [ (%), & (R € 2(A,L),
Lo R(X,9) = R(X, Y) (vanishes when X or Q) isin ¢(L)).

« is the connection 1-form associated to V.
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Ordinary connections on Atiyah Lie algebroid

Thierry Masson, CPT-Luminy

Connections

T x

0——T6(P, g)——=Tc(TP)

r(Tm) 0

Proposition (Connections)

Ordinary connection on the Atiyah Lie algebroid = connection on P.
The notions of curvature coincide.

This example explains the terminology “ordinary connection”.
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Transitive Lie algebroids Connections

Ordinary connections on Atiyah Lie algebroid

T x

0——T6(P, g)——=Tc(TP)

r(Tm) 0

Proposition (Connections)

Ordinary connection on the Atiyah Lie algebroid = connection on P.
The notions of curvature coincide.

This example explains the terminology “ordinary connection”.

The geometric equivalence: A connection on P defines a horizontal lift
M(TM) — Te(TP), X +— xh.
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Transitive Lie algebroids Connections

Ordinary connections on Atiyah Lie algebroid

T x

0——T6(P, g)——=Tc(TP)

r(Tm) 0

Proposition (Connections)
Ordinary connection on the Atiyah Lie algebroid = connection on P.
The notions of curvature coincide.

This example explains the terminology “ordinary connection”.

The geometric equivalence: A connection on P defines a horizontal lift
M(TM) — Te(TP), X +— xh.

The algebraic equivalence: Suppose G is connected and simply connected.
W” € Q'(P) ® g a connection 1-form on P.
0 € g* ® g the Maurer-Cartan 1-form on G.
W = W —0€Qua(P,g) CQ(P)O A" © g
is gequ-basic.
=> It corresponds to the connection 1-form o’ € Q/,.(P, g) associated to «” .
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Transitive Lie algebroids Connections

Generalized connections on transitive Lie algebroids

A a transitive Lie algebroid.
Generalized connection: a 1-form & € Q'(A,L).
Curvature: the 2-form R = di + 1@, @] € Q2(A,L).

An ordinary connection is a generalized connection for which @ o ¢ = —Id;.
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Transitive Lie algebroids Connections

Generalized connections on transitive Lie algebroids

A a transitive Lie algebroid.

Generalized connection: a 1-form & € Q'(A,L).

Curvature: the 2-form R = di + 1@, @] € Q2(A,L).

An ordinary connection is a generalized connection for which @ o ¢ = —Id;.

Consider a representation of A on &:

p

rTm)——o

H
0 A(f) ——=D() —Z=T(TM) ——=0
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Transitive Lie algebroids Connections

Generalized connections on transitive Lie algebroids

A a transitive Lie algebroid.

Generalized connection: a 1-form & € Q'(A,L).

Curvature: the 2-form R = di + 1@, @] € Q2(A,L).

An ordinary connection is a generalized connection for which @ o ¢ = —Id;.

Consider a representation of A on &:

0 L /Lj\A L~ T(TM)——=0
S H
0 A(f) ——=D() —Z=T(TM) ——=0

@ defines a covariant derivative on &:
Vzp = $(X)-¢ + du(D(X))p.

[635, @@] - ﬁ[x,@] =10¢ oR(X,9)—> V is not a representation in general.
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Transitive Lie algebroids Connections

Generalized connections on Atiyah Lie algebroids

Suppose G is connected and simply connected.

T x

0——=T¢(P,g)——=Tc(TP)

r(Tm) 0

A connection & on [(TP) is a gequ-basic 1-form &g, € QpA(P, ).

Bog =W+ 9 € (A (P)R ) (C*(P)® 9" @ g).

If p = —6, then @ is an ordinary connection on '¢(TP).
=> w is an (ordinary) connection 1-form on P.

Otherwise, © + 6 measures the deviation of & from an ordinary connection.

=> (» contains new degrees of freedom for gauge field theories.
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Transitive Lie algebroids Gauge transformations

Gauge group of a representation

£ arepresentation space of the transitive Lie algebroid A:
& P

0 L A r(Tm) —=o0
| i |
0 A(f) ——=D(&) —Z=T(TM) —=0

The gauge group of € is the group Aut(&) (vertical automorphisms of £).
Aut(&) C A(E),

A(£) are the infinitesimal gauge transformations on &.
=> ¢ (&) in an infinitesimal gauge transformation for any £ € L.
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Transitive Lie algebroids Gauge transformations

Infinitesimal gauge transformations

Infinitesimal gauge transformation: any element £ € L.
=> No notion of finite gauge transformation at the level of A (~ NCG).

Gauge transformation of connection: d¢ -+ [@,¢&].

Gauge transformation of curvature: [R, £].

=> The (local) gauge principle is implemented at the infinitesimal level.
=> BRST-like.
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Transitive Lie algebroids Gauge transformations

Infinitesimal gauge transformations

Infinitesimal gauge transformation: any element £ € L.
=> No notion of finite gauge transformation at the level of A (~ NCG).

Gauge transformation of connection: d¢ -+ [@,¢&].

Gauge transformation of curvature: [R, £].

=> The (local) gauge principle is implemented at the infinitesimal level.
=> BRST-like.

Gauge transformations on Atiyah Lie algebroids: The infinitesimal gauge
transformations on generalized connections on ['c(TP) are the (ordinary)
infinitesimal gauge transformations on P.

=> Here there is a notion of gauge group...
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Transitive Lie algebroids Gauge transformations

Assets and problems
of gauge field theories on Lie algebroids

The mathematical structures are (very) close to ordinary geometry.
=> Natural extension of the ordinary differential geometry of gauge fields.

The gauge theories are of Yang-Mills-Higgs type.
=> We know where the Yang-Mills theories are:
w — B as a special case of w + ...

All Lie groups are accessible (Atiyah Lie algebroids).

BRST-like differential structures.
=> Work in progress to understand if this is only a coincidence...

@ New framework: require some work to construct realistic models.
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Conclusion

Before the conclusion: a unifying theorem

SL(n)-principal bundle P over M.
& associated vector bundle with fiber C".
A = T'(End(&)) the algebra of endomorphisms of £.

The short exact sequence

ad p

0 Int(A) Der(A)——T(TM)——0
defines Der(A) as a transitive Lie algebroid over M, with ¢ = ad.

Theorem (S. Lazzarini, T.M.)
The following three spaces are isomorphic:
@ The space of generalized connections on ['¢(TP).
@ The space of generalized connections on Der(A).
@ The space of traceless n.c. connections on the right A-module M = A

These isomorphisms are compatible with curvatures and gauge transformations.
All these spaces contain ordinary (Yang-Mills) connections on P.
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Conclusion
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Conclusion

@ Gauge field theories can be generalized in at least two directions:

@ noncommutative geometry,
o transitive Lie algebroids.

=> These generalizations can coincide in specific examples.

Thierry Masson, CPT-Luminy
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Conclusion

@ Gauge field theories can be generalized in at least two directions:

@ noncommutative geometry,
o transitive Lie algebroids.

=> These generalizations can coincide in specific examples.

@ Common feature: add some purely algebraic directions to space-time.
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Conclusion

Conclusion

@ Gauge field theories can be generalized in at least two directions:

@ noncommutative geometry,
o transitive Lie algebroids.

=> These generalizations can coincide in specific examples.
@ Common feature: add some purely algebraic directions to space-time.

@ We naturally get Yang-Mills-Higgs type gauge theories in both situations.
=> They contain ordinary Yang-Mills gauge theories used in physics.
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@ Gauge field theories can be generalized in at least two directions:

@ noncommutative geometry,
o transitive Lie algebroids.

=> These generalizations can coincide in specific examples.
@ Common feature: add some purely algebraic directions to space-time.

@ We naturally get Yang-Mills-Higgs type gauge theories in both situations.
=> They contain ordinary Yang-Mills gauge theories used in physics.

@ A pattern for (realistic) gauge field theories:

Geometric
Structure

Algebraic inclusion Global projection
—_—

Structure

Structure
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