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How to construct a gauge field theory?

The basic ingredients are:
1 A space of local symmetries (space-time dependence): a gauge group.
2 An implementation of the symmetry on matter fields: a representation theory.
3 A notion of derivation: some differential structures.
4 A (gauge compatible) replacement of ordinary derivations: covariant derivative.
5 A way to write a gauge invariant Lagrangian density: action functional.

Presentation of three mathematical schemes to construct gauge field theories:

Ordinary differential geometry of principal fiber bundles.

Noncommutative geometry.

Transitive Lie algebroids.

Point 5 will not be covered. . .
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Ordinary differential geometry

Ordinary differential geometry

1 Ordinary differential geometry

2 Noncommutative geometry

3 Transitive Lie algebroids
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Ordinary differential geometry

Connections in differential geometry

Let P π−→M be a G-principal fiber bundle and g the Lie algebra of G.
Rg the right action of g ∈ G on P

Connection onP : 1-form ω ∈ Ω1(P)⊗ g such that:
ω(ξP) = ξ, ∀ξ ∈ g, R∗gω = Adg−1ω, ∀g ∈ G

Curvature: Ω = dω + 1
2 [ω, ω] ∈ Ω2(P)⊗ g.

Transfer this connection on any associated vector bundle E :

Covariant derivative: X ∈ Γ(TM) Ù∇X : Γ(E)→ Γ(E) (smooth sections of E).
∇X(fε) = (X·f)ε+ f∇Xε, and other relations. . .

Ù This is the minimal coupling in physics.
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Ordinary differential geometry

Three levels of description

Globally onP : ω ∈ Ω1(P)⊗ g connection 1-form on P , Ω its curvature.

ω ∈ Ω1(P)⊗ g, equivariant + vertical condition.
Ω ∈ Ω2(P)⊗ g, equivariant + horizontal.

Ù Preferred description for mathematicians. . .

Locally onM: (U, φ) local trivialisation of P with φ : U× G→ P |U,
s its local section, s(x) = φ(x, e).

Local expressions of the connection and the curvature:
A = s∗ω ∈ Ω1(U)⊗ g F = s∗Ω ∈ Ω2(U)⊗ g

(Ui, φi) and (Uj, φj) two local trivialisations. gij : Ui ∩ Uj 6= ∅→ G transition
functions:

Aj = g−1
ij Aigij + g−1

ij dgij Fj = g−1
ij Figij

Ù Preferred description for physicists. . .

Globally onM: The family {Fi}i with its homogeneous gluing relations, or Ω equivariant
and horizontal, defines a section F of

∧2T∗M⊗ AdP .

The family {Ai}i is not associated to an algebraic object globally defined onM.

Ù Preferred description for me. . .
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Ordinary differential geometry

Covariant derivatives and algebraic structures

M smooth manifold, (Ω•(M), d) de Rham differential calculus on M.
E a vector bundle on M.
M = Γ(E) the space of smooth sections of E .

Covariant derivative on E : linear map
∇ : M→ Ω1(M)⊗C∞(M) M such that ∇(fε) = df ⊗ ε+ f∇ε

for any ε ∈ M and f ∈ C∞(M).

Natural extension:
∇ : Ω•(M)⊗C∞(M) M→ Ω•+1(M)⊗C∞(M) M

defined by
∇(η ⊗ ε) = dη ⊗ ε+ (−1)rη ∧∇ε for any η ∈ Ωr(M).

Curvature: the C∞(M)-linear map
∇2 : M→ Ω2(M)⊗C∞(M) M

Ù 2-form F on M with values in AdP ⊂ End(E) = E∗ ⊗ E (modulo rep.).

Ù This can be generalized. . .
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Ordinary differential geometry

Assets and problems of ordinary gauge field theories

They are the prototype of theories used in the standard model of particle physics.

The mathematical structures are now accustomed and popular.

The gauge theories obtained are massless gauge theories.
Ù Require the symmetry breaking mechanism to generate masses in the SM.
Ù Higgs boson discovered: not a bad theoretical idea after all. . .
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Noncommutative geometry

Noncommutative geometry

1 Ordinary differential geometry

2 Noncommutative geometry
Derivation-based differential calculus
Noncommutative connections and their properties
The endomorphism algebra of a vector bundle

3 Transitive Lie algebroids
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Noncommutative geometry

The main noncommutative concepts

Study geometric structures using equivalent algebraic structures.

Replace commutative algebras of functions by noncommutative algebras.

There is not a unique way to generalize key geometrical structures.
Ù Several approaches to NCG:

Spectral triple (Connes’ approach),
Quantum groups and covariant differential calculi,
Derivation-based noncommutative differential calculus (Dubois-Violette). . .

Ù The one used in the following.
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Noncommutative geometry Derivation-based differential calculus

Derivations of an associative algebra

A associative algebra with unit.
Z(A) center of A: commutative subalgebra.

Vector space of derivations of A:
Der(A) = {X : A→ A /X linear,X(ab) = X(a)b + aX(b),∀a, b ∈ A}

Structure of Der(A): One has

Der(A) is a Lie algebra for the bracket [X,Y]a = XYa−YXa,

Der(A): Z(A)-module for the product (fX)a = f(Xa),

Int(A) = {ada : b 7→ [a, b] / a ∈ A} ⊂ Der(A), inner derivations:
Lie ideal andZ(A)-submodule,

Out(A) = Der(A)/Int(A) Ù s.e.s. of Lie algebras andZ(A)-modules
0 // Int(A) //Der(A) //Out(A) //0
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Noncommutative geometry Derivation-based differential calculus

Derivation-based differential calculus

A associative algebra with unit.

Ω•Der(A) the space ofZ(A)-multilinear antisymmetric maps from Der(A)n to A,
with Ω0

Der(A) = A.
Ω•Der(A) =

⊕
n≥0 Ωn

Der(A)

N-graded algebra for the product

(ωη)(X1, . . . ,Xp+q) =
1

p!q!
∑

σ∈Sp+q

(−1)sign(σ)ω(Xσ(1), . . . ,Xσ(p))η(Xσ(p+1), . . . ,Xσ(p+q))

differential graded algebra for the differential d defined by

dω(X1, . . . ,Xn+1) =
n+1∑
i=1

(−1)i+1Xiω(X1, . . .
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1)
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Noncommutative geometry Noncommutative connections and their properties

Noncommutative connections

M a right A-module (representation space).

Noncommutative connection: linear map ∇̂X : M→ M, defined for any X ∈ Der(A),
such that ∀X,Y ∈ Der(A), ∀a ∈ A, ∀m ∈ M, ∀f ∈ Z(A):

∇̂X(ma) = m(Xa) + (∇̂Xm)a,
∇̂X+Ym = ∇̂Xm + ∇̂Ym,

∇̂fXm = (∇̂Xm)f

Curvature: linear map R̂(X,Y) : M→ M defined for any X,Y ∈ Der(A) by

R̂(X,Y)m = [∇̂X, ∇̂Y]m− ∇̂[X,Y]m

12
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Noncommutative geometry Noncommutative connections and their properties

Gauge transformations, Hermitean structure

M a right A-module.

Gauge group of M:
G = Aut(M), the group of automorphisms of M as a right A-module.

Gauge transformations: For any Φ ∈ G and any n.c. connection ∇̂,
∇̂Φ

X = Φ−1 ◦ ∇̂X ◦ Φ : M→ M
is a noncommutative connection.
Ù action of G on the space of noncommutative connections.

When A is an involutive algebra, notion of Hermitean structure:

〈−,−〉 : M×M→ A,

Hermitean n.c. connections,

Unitary gauge transformations.
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Noncommutative geometry Noncommutative connections and their properties

Noncommutative connections for M = A
Special case: the right A-module M = A and A has a unit 1.

∇̂X : A→ A be a n.c. connection.

∇̂ completely given by ∇̂X1 = ω(X), with ω ∈ Ω1
Der(A):

∇̂Xa = Xa + ω(X)a

Curvature of ∇̂: multiplication on the left on A by the n.c. 2-form
Ω(X,Y) = dω(X,Y) + [ω(X), ω(Y)]

Gauge group: identified with invertible elements g ∈ A by Φg(a) = ga.

Gauge transformations on ∇̂:
ω 7→ ωg = g−1ωg + g−1dg Ω 7→ Ωg = g−1Ωg

∇̂0
X = Xa is a n.c. connection on A with vanishing curvature, ω = 0.

Ù Replace ∇̂ by an algebraic object: connection 1-form.

If A is involutive, hermitean structure: 〈a, b〉 = a∗b.
U(A) = {u ∈ A / u∗u = uu∗ = 1} is the unitary gauge group.

14



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy

Noncommutative geometry Noncommutative connections and their properties

Noncommutative connections for M = A
Special case: the right A-module M = A and A has a unit 1.

∇̂X : A→ A be a n.c. connection.

∇̂ completely given by ∇̂X1 = ω(X), with ω ∈ Ω1
Der(A):

∇̂Xa = Xa + ω(X)a

Curvature of ∇̂: multiplication on the left on A by the n.c. 2-form
Ω(X,Y) = dω(X,Y) + [ω(X), ω(Y)]

Gauge group: identified with invertible elements g ∈ A by Φg(a) = ga.

Gauge transformations on ∇̂:
ω 7→ ωg = g−1ωg + g−1dg Ω 7→ Ωg = g−1Ωg

∇̂0
X = Xa is a n.c. connection on A with vanishing curvature, ω = 0.

Ù Replace ∇̂ by an algebraic object: connection 1-form.

If A is involutive, hermitean structure: 〈a, b〉 = a∗b.
U(A) = {u ∈ A / u∗u = uu∗ = 1} is the unitary gauge group.

14



Gauge field theories: a comparison of various mathematical approaches, Paris, February 12, 2014 Thierry Masson, CPT-Luminy

Noncommutative geometry The endomorphism algebra of a vector bundle

A = C∞(M)

A = C∞(M) (complex valued), for a smooth compact manifold M.
Involutive algebra for the complex conjugation.

Z(A) = C∞(M).

Der(A) = Γ(TM) (complex vector fields on M).

Int(A) = 0.

Out(A) = Γ(TM).

Ω•Der(A) = Ω•(M), de Rham forms on M.

N.C. connections are ordinary connections.

15
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Noncommutative geometry The endomorphism algebra of a vector bundle

A = Mn(C)

A = Mn(C) = Mn, finite dimensional algebra of n× n complex matrices.
Involutive algebra for the adjointness of matrices.

Z(Mn) = C.

Der(Mn) = Int(Mn) ' sln = sl(n,C) (traceless matrices)
sln(C) 3 γ 7→ adγ ∈ Int(Mn).

Out(Mn) = 0.

Ω•Der(Mn) ' Mn ⊗
∧•

sl∗n ,
differential d′ = Chevalley-Eilenberg for sln represented on Mn by ad.

Canonical 1-form iθ ∈ Ω1
Der(Mn) such that for any γ ∈ Mn(C)

iθ(adγ) = γ − 1
n Tr(γ)1

∇̂0
Xa = Xa− iθ(X)a is a gauge invariant connection on M = A with zero curvature.

Ù Important role in gauge field theories. . .
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Noncommutative geometry The endomorphism algebra of a vector bundle

A = C∞(M)⊗ Mn(C)

Mix of previous examples: A = C∞(M)⊗Mn(C), matrix valued functions on M.

Z(A) = C∞(M).

Der(A) = [Der(C∞(M))⊗ 1]⊕ [C∞(M)⊗ Der(Mn)]
= Γ(TM)⊕ [C∞(M)⊗ sln] as Lie algebras and C∞(M)-modules.

X = X + adγ for X ∈ Γ(TM) and γ ∈ C∞(M)⊗ sln = A0 (traceless elements in A).

Int(A) = A0 and Out(A) = Γ(TM).

Ω•Der(A) = Ω•(M)⊗ Ω•Der(Mn) with d̂ = d + d′.

N.C. 1-form iθ defined as iθ(X + adγ) = γ ∈ A0 ⊂ A.
It splits the short exact sequence

0 //A0 //Der(A) //
iθ
yy

Γ(TM) //0

Gauge fields models of Yang-Mills-Higgs type:
Yang-Mills in the geometric direction, Higgs (scalar fields) in the algebraic direction.
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Noncommutative geometry The endomorphism algebra of a vector bundle

The endomorphism algebra

M smooth locally compact manifold.
SU(n)-principal fiber bundle P .
E associated vector bundle with fiber Cn.
End(E) fiber bundle of endomorphisms of E .

A the algebra of smooth sections of End(E).

“Trivial case”: E = M× Cn Ù A = C∞(M)⊗Mn.
In general, A is (globally) more complicated.
Using trivialisations of E , the algebra A looks locally as C∞(U)⊗Mn.

Z(A) = C∞(M).

Involution, trace map and determinant (Tr, det : A→ C∞(M)) well defined.

SU(A) the unitaries in A of determinant 1,
su(A) the traceless antihermitean elements:

G = SU(A) is the gauge group of P
LieG = su(A) is the Lie algebra of the gauge group
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Noncommutative geometry The endomorphism algebra of a vector bundle

Derivations and differential calculus

ρ : Der(A)→ Der(A)/Int(A) = Out(A) the projection.

Out(A) ' Der(C∞(M)) = Γ(TM).
ρ is the restriction of X ∈ Der(A) toZ(A) = C∞(M).

Int(A) is isomorphic to A0, the traceless elements in A.

The s.e.s. of Lie algebras and C∞(M)-modules of derivations looks like

0 // A0
ad // Der(A) ρ // Γ(TM) // 0

There is no a priori canonical splitting in the non trivial case.

The “n.c. 1-form” iθ cannot be defined here.
But one can define a map of C∞(M)-modules:

iθ : Int(A)→ A0 adγ 7→ γ − 1
n Tr(γ)1
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Noncommutative geometry The endomorphism algebra of a vector bundle

Connections on E

∇E any (ordinary) SU(n)-connection on E .
Associated connections: ∇E∗ on E∗ and∇ on End(E) = E∗ ⊗ E .
Notation X = ρ(X) ∈ Γ(TM) for any X ∈ Der(A).

Γ(TM) 3 X 7→ ∇X ∈ Der(A).
Ù X 7→ ∇X is a splitting as C∞(M)-modules of the s.e.s.

0 //A0 //Der(A) //Γ(TM) //
∇uu

0

The obstruction to be a splitting of Lie algebras is the curvature of∇:
R(X, Y) = [∇X,∇Y]−∇[X,Y].

X−∇X ∈ Int(A) for any X ∈ Der(A).

X 7→ α(X) = −iθ(X−∇X) is a n.c. 1-form α ∈ Ω1
Der(A).

X = ∇X − adα(X), ∀X ∈ Der(A) α(adγ) = −γ, ∀γ ∈ A0

SU(n)-connection∇E Ù n.c. 1-form α s.t. α(adγ) = −γ .
Identification of curvature and gauge transformations.
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Noncommutative geometry The endomorphism algebra of a vector bundle

Noncommutative connections on M = A

M = A with Hermitean structure (a, b) 7→ a∗b.
ω ∈ Ω1

Der(A) Ù ∇̂ω n.c. connection defined by ∇̂ωXa = Xa + ω(X)a.

∇E on E Ù∇ on End(E) Ù α ∈ Ω1
Der(A) Ù ∇̂α n.c. connection.

Theorem (Ordinary connections as noncommutative connections)

The space of n.c. connections on the right module A compatible with the Hermitean
structure (a, b) 7→ a∗b contains the space of ordinary SU(n)-connections on E .

This inclusion is compatible with the corresponding definitions of curvature and
gauge transformations.

α is a globally defined algebraic object on M corresponding to the family {Ai}i.
What are n.c. connections from a physical point of view?
Their n.c. part can be interpreted as scalar Higgs fields in (natural) models.

Ù Spontaneous symmetry breaking mechanism, mass generation. . .
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Noncommutative geometry The endomorphism algebra of a vector bundle

Assets and problems of n.c. gauge field theories

The gauge theories obtained in NCG are very diverse:
Many approaches to NCG. . .
Many algebras can be considered. . .
Ù Gauge field theories can be realistic or exotic.

Many of these theories are of Yang-Mills-Higgs type.
Ù The n.c. standard model by Chamseddine, Connes and Marcolli.

The gauge group is the group of automorphisms of a right module.
Ù Not all Lie groups are accessible, for instance U(1). . .

The mathematical structures can be very involved.
Ù Spectral triples require a lot of mathematical skill.
Ù Not convenient to explore new models related to particle physics. . .
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Transitive Lie algebroids

Transitive Lie algebroids

1 Ordinary differential geometry

2 Noncommutative geometry

3 Transitive Lie algebroids
Generalities on Lie algebroids
Examples, representation theory
Differential structures
Connections
Gauge transformations
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Transitive Lie algebroids Generalities on Lie algebroids

Lie algebroids: the algebraic point of view

Lie algebroids are usually considered as generalizations of the tangent bundle.

Here the geometric structure is ignored in favor of the algebraic structure, as in NCG.

M a smooth manifold.
Γ(TM) the Lie algebra and C∞(M)-module of vector fields.

Definition given in the “language” of algebras and modules:

A Lie algebroid A is:

a finite projective module over C∞(M),

equipped with a Lie bracket [−,−],
equipped with a C∞(M)-linear Lie morphism ρ : A→ Γ(TM) such that

[X, fY] = f [X,Y] + (ρ(X)·f) Y
for any X,Y ∈ A and f ∈ C∞(M).
ρ is the anchor map.
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Transitive Lie algebroids Generalities on Lie algebroids

Transitive Lie algebroids

A Lie algebroid A
ρ→ Γ(TM) is transitive if ρ is surjective.

L = Ker ρ is a Lie algebroid with null anchor on M.

The vector bundle L such that L = Γ(L) is a locally trivial bundle in Lie algebras.
Ù gives the Lie structure on L.

One has the s.e.s. of Lie algebras and C∞(M)-modules

0 //L ι //A
ρ //Γ(TM) //0

L is called the kernel of A.

This s.e.s. is the key structure for various considerations.

Think about it as an infinitesimal version of a principal fiber bundle

G //P π //M
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Transitive Lie algebroids Examples, representation theory

Example 1: Derivations of a vector bundle

E a vector bundle over M.

End(E) the fiber bundle of endomorphisms of E , A(E) = Γ(End(E)).

D(E) the space of first-order differential operators on E with scalar symbols.

σ : D(E)→ Γ(TM) the symbol map.

0 //A(E) ι //D(E) σ //Γ(TM) //0

is the transitive Lie algebroid of derivations of E .

Remark: A(E) is the endomorphism algebra of E defined before. . .
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Transitive Lie algebroids Examples, representation theory

Representation of a Lie algebroid

A
ρ−→ Γ(TM) a Lie algebroid and E →M a vector bundle.

A representation of A on E is a morphism of Lie algebroids φ : A→ D(E).

When A is transitive, one has the commutative diagram of exact rows:

0 // L ι //

φL
��

A
ρ //

φ
��

Γ(TM) // 0

0 // A(E) ι // D(E) σ // Γ(TM) // 0

φL : L→ A(E) is a morphism of Lie algebras.

Reminder:

Principal fiber bundles: representation theory is played by associated vector bundles.

Noncommutative geometry: representation theory is played by modules.
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Transitive Lie algebroids Examples, representation theory

Example 2: Atiyah Lie algebroids

P π−→M a G-principal fiber bundle, g the Lie algebra of G.
Rg : P → P , Rg(p) = p·g, the right action of G on P .

ΓG(TP) = {X ∈ Γ(TP) / Rg ∗X = X for all g ∈ G}
ΓG(P, g) = {v : P→ g / v(p·g) = Adg−1v(p) for all g ∈ G}

Both are Lie algebras and C∞(M)-modules.

ΓG(TP) is the space of π∗-projectable vector fields in Γ(TP) Ù π∗ : ΓG(TP)→ Γ(TM).

ι : ΓG(P, g)→ ΓG(TP) defined by ι(v)|p = v(p)P
|p =

(
d
dt
p· exp(tv(p))

)
|t=0

g 3 v 7→ vP the fundamental vector field on P .

This induces a s.e.s. of Lie algebras and C∞(M)-modules

0 //ΓG(P, g) ι //ΓG(TP) π∗ //Γ(TM) //0 .
ΓG(TP) is the Atiyah (transitive) Lie algebroid associated to P .

The representations of ΓG(TP) are given by the associated vector bundles to P .

Atiyah Lie algebroids permit to embed ordinary gauge theories in this framework.
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Transitive Lie algebroids Examples, representation theory

Example 3: Trivial Lie algebroids

Trivial Lie algebroid = Atiyah Lie algebroid of a trivial principal bundle P = M× G.
Compact notation: TLA(M, g) ≡ A = Γ(TM⊕ (M× g)).

Proposition

Every transitive Lie algebroid A is locally of the form TLA(U , g) for U ⊂M open subset.

Trivialization of an Atiyah Lie algebroid Ö Trivialization of the principal fiber bundle.
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Transitive Lie algebroids Differential structures

Differential forms: general definition

0 //L ι //A
ρ //Γ(TM) //0 a transitive Lie algebroid.

φ : A→ D(E) a representation of A on E .

For p = 0: Ω0(A, E) = Γ(E).

For p ≥ 1: Ωp(A, E) the linear space of C∞(M)-multilinear antisymmetric maps
from Ap to Γ(E).

Ω•(A, E) =
⊕

p≥0 Ωp(A, E) is equipped with the differential

(d̂φω̂)(X1, . . . ,Xp+1) =
p+1∑
i=1

(−1)i+1φ(Xi)·ω̂(X1, . . .
i
∨. . . . ,Xp+1)

+
∑

1≤i<j≤p+1

(−1)i+jω̂([Xi,Xj],X1, . . .
i
∨. . . .

j
∨. . . . ,Xp+1)

φ(X)·ϕ is the action of the first order diff. op. φ(X) on ϕ ∈ Γ(E).

d̂
2
φ = 0 (φ is a morphism of Lie algebras).
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Transitive Lie algebroids Differential structures

Differential forms: two examples

Let E = M× C, then Γ(E) = C∞(M).
The anchor map ρ is a representation of A on C∞(M).

Forms with values in C∞(M): (Ω•(A), d̂A) is the graded commutative differential
algebra of forms on A with values in C∞(M) associated to the representation ρ.

E = L the vector bundle such that L = Γ(L).
For X ∈ A and ` ∈ L, define adX(`) ∈ L such that ι(adX(`)) = [X, ι(`)].
This is the adjoint representation of A on L.

Forms with values in the kernel: (Ω•(A, L), d̂) is the graded differential Lie algebra of
forms on A with values in the kernel L associated to the adjoint representation.
Ù graded Lie algebra and graded differential module on Ω•(A).
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Transitive Lie algebroids Differential structures

Differential forms on trivial Lie algebroids

A = TLA(M, g) a trivial Lie algebroid.

Ω•(A) is the total complex of the bigraded commutative algebra Ω•(M)⊗
∧•

g∗.
d̂A = d + s with

d : Ω•(M)⊗
∧•

g∗ → Ω•+1(M)⊗
∧•

g∗ de Rham differential

s : Ω•(M)⊗
∧•

g∗ → Ω•(M)⊗
∧•+1

g∗ Chevalley-Eilenberg differential

Ω•(A, L) is the total complex of the bigraded Lie algebra Ω•(M)⊗
∧•

g∗ ⊗ g.
d̂ = d + s′ with s′ the Chevalley-Eilenberg differential on

∧•
g∗ ⊗ g (for the ad rep.).

Compact notation: (Ω•TLA(M, g), d̂TLA) = (Ω•(A, L), d̂).

They are models for trivializations of forms on any transitive Lie algebroid.
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Transitive Lie algebroids Differential structures

Differential forms on Atiyah Lie algebroids
A the Atiyah Lie algebroid of a G-principal fiber bundle P π−→M.

Compact notation: Ω•Lie(P, g) = Ω•(A, L).

gequ = {ξP ⊕ ξ / ξ ∈ g} ⊂ TLA(P, g) = Γ(TP ⊕ (P × g))

is a Lie algebra, which defines a Cartan operation on (Ω•TLA(P, g), d̂TLA).

(Ω•TLA(P, g)gequ , d̂TLA) the differential graded subcomplex of basic elements.

Theorem (S. Lazzarini, T.M.)

If G is connected and simply connected then
(Ω•Lie(P, g), d̂) is isomorphic to (Ω•TLA(P, g)gequ , d̂TLA)

Ù Ω•Lie(P, g) ⊂ Ω•TLA(P, g) ' Ω•(P)⊗
∧•

g∗ ⊗ g.

When G is connected and simply connected, a form can be described as:

a gequ-basic elements in Ω•TLA(P, g);

a form in Ω•Lie(P, g);

a family of local trivializations in Ω•TLA(U , g) with gluing relations.
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Transitive Lie algebroids Connections

Ordinary connections on transitive Lie algebroids
0 //L ι //A

ρ //Γ(TM) //0 a transitive Lie algebroid.

Connection on a transitive Lie algebroid: splitting∇ : Γ(TM)→ A as
C∞(M)-modules of the s.e.s.

0 //L
ι
//A

ρ
//Γ(TM) //

∇
yy 0

Curvature: obstruction to be a morphism of Lie algebras:
R(X, Y) = [∇X,∇Y]−∇[X,Y] ∈ ι(L)

X = ∇X − ι ◦ ω∇(X)

ω∇ ∈ Ω1(A, L) and ω∇ ◦ ι(`) = −` for any ` ∈ L (normalization on L).

R∇(X,Y) = (d̂ω∇)(X,Y) + [ω∇(X), ω∇(Y)], R∇ ∈ Ω2(A, L),

ι ◦ R∇(X,Y) = R(X, Y) (vanishes when X or Y is in ι(L)).

ω∇ is the connection 1-form associated to∇.
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Transitive Lie algebroids Connections

Ordinary connections on Atiyah Lie algebroid

0 //ΓG(P, g) ι //ΓG(TP) π∗ //Γ(TM) //0

Proposition (Connections)

Ordinary connection on the Atiyah Lie algebroid = connection on P .
The notions of curvature coincide.

This example explains the terminology “ordinary connection”.

The geometric equivalence: A connection on P defines a horizontal lift
Γ(TM)→ ΓG(TP), X 7→ Xh.

The algebraic equivalence: Suppose G is connected and simply connected.
ωP ∈ Ω1(P)⊗ g a connection 1-form on P .
θ ∈ g∗ ⊗ g the Maurer-Cartan 1-form on G.

ω̂gequ = ωP − θ ∈ Ω1
TLA(P, g) ⊂ Ω•(P)⊗

∧•
g∗ ⊗ g

is gequ-basic.
Ù It corresponds to the connection 1-form ω∇ ∈ Ω1

Lie(P, g) associated to ωP .
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Transitive Lie algebroids Connections

Generalized connections on transitive Lie algebroids

A a transitive Lie algebroid.

Generalized connection: a 1-form ω̂ ∈ Ω1(A, L).

Curvature: the 2-form R̂ = d̂ω̂ + 1
2 [ω̂, ω̂] ∈ Ω2(A, L).

An ordinary connection is a generalized connection for which ω̂ ◦ ι = −IdL.

Consider a representation of A on E :

0 // L
ι

//

φL
��

A
ω̂

ww ρ //

φ
��

Γ(TM) // 0

0 // A(E) ι // D(E) σ // Γ(TM) // 0

ω̂ defines a covariant derivative on E :
∇̂Xϕ = φ(X)·ϕ+ φL(ω̂(X))ϕ.

[∇̂X, ∇̂Y]− ∇̂[X,Y] = ι ◦ φL ◦ R̂(X,Y) Ù ∇̂ is not a representation in general.
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Transitive Lie algebroids Connections

Generalized connections on Atiyah Lie algebroids

Suppose G is connected and simply connected.

0 //ΓG(P, g) ι //ΓG(TP) π∗ //Γ(TM) //0

A connection ω̂ on ΓG(TP) is a gequ-basic 1-form ω̂gequ ∈ Ω1
TLA(P, g).

ω̂gequ = ω + ϕ ∈ (Ω1(P)⊗ g)⊕ (C∞(P)⊗ g∗ ⊗ g).

If ϕ = −θ, then ω̂ is an ordinary connection on ΓG(TP).
Ù ω is an (ordinary) connection 1-form on P .

Otherwise, ϕ+ θ measures the deviation of ω̂ from an ordinary connection.

Ù ϕ contains new degrees of freedom for gauge field theories.
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Transitive Lie algebroids Gauge transformations

Gauge group of a representation

E a representation space of the transitive Lie algebroid A:

0 // L ι //

φL
��

A
ρ //

φ
��

Γ(TM) // 0

0 // A(E) ι // D(E) σ // Γ(TM) // 0

The gauge group of E is the group Aut(E) (vertical automorphisms of E).

Aut(E) ⊂ A(E),
A(E) are the infinitesimal gauge transformations on E .

Ù φL(ξ) in an infinitesimal gauge transformation for any ξ ∈ L.
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Transitive Lie algebroids Gauge transformations

Infinitesimal gauge transformations

Infinitesimal gauge transformation: any element ξ ∈ L.
Ù No notion of finite gauge transformation at the level of A (' NCG).

Gauge transformation of connection: d̂ξ + [ω̂, ξ].

Gauge transformation of curvature: [R̂, ξ].

Ù The (local) gauge principle is implemented at the infinitesimal level.
Ù BRST-like.

Gauge transformations on Atiyah Lie algebroids: The infinitesimal gauge
transformations on generalized connections on ΓG(TP) are the (ordinary)
infinitesimal gauge transformations on P .

Ù Here there is a notion of gauge group. . .
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Transitive Lie algebroids Gauge transformations

Assets and problems
of gauge field theories on Lie algebroids

The mathematical structures are (very) close to ordinary geometry.
Ù Natural extension of the ordinary differential geometry of gauge fields.

The gauge theories are of Yang-Mills-Higgs type.
Ù We know where the Yang-Mills theories are:

ω − θ as a special case of ω + ϕ. . .

All Lie groups are accessible (Atiyah Lie algebroids).

BRST-like differential structures.
Ù Work in progress to understand if this is only a coincidence. . .

New framework: require some work to construct realistic models.
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Conclusion

Before the conclusion: a unifying theorem

SL(n)-principal bundle P over M.
E associated vector bundle with fiber Cn.
A = Γ(End(E)) the algebra of endomorphisms of E .

The short exact sequence

0 // Int(A) ad //Der(A) ρ //Γ(TM) //0
defines Der(A) as a transitive Lie algebroid over M, with ι = ad.

Theorem (S. Lazzarini, T.M.)

The following three spaces are isomorphic:
1 The space of generalized connections on ΓG(TP).
2 The space of generalized connections on Der(A).
3 The space of traceless n.c. connections on the right A-module M = A

These isomorphisms are compatible with curvatures and gauge transformations.
All these spaces contain ordinary (Yang-Mills) connections on P .
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Conclusion

Conclusion

Gauge field theories can be generalized in at least two directions:
noncommutative geometry,
transitive Lie algebroids.

Ù These generalizations can coincide in specific examples.

Common feature: add some purely algebraic directions to space-time.

We naturally get Yang-Mills-Higgs type gauge theories in both situations.
Ù They contain ordinary Yang-Mills gauge theories used in physics.

A pattern for (realistic) gauge field theories:

Algebraic
Structure

Global
Structure

Geometric
Structure

inclusion projection
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