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1. Introduction

As in [1], we consider a d-dimensional compact Riemannian manifold (M, g) without boundary, together with a
nonminimal Laplace type operator P on a smooth hermitean vector bundle V over M of fiber CN written locally as

P := —[g""u(x)d,d, + v"(x)d, + w(x)]. (1.1)

Here u(x) € My(C) is a positive and invertible matrix valued function and v”, w are My(C) matrices valued functions. The
operator is expressed in a local trivialization of V over an open subset of M which is also a chart on M with coordinates (x*).
This trivialization is such that the adjoint for the hermitean metric corresponds to the adjoint of matrices and the trace on
endomorphisms on V becomes the usual trace tr on matrices.

For any a € I'(End(V)), we consider the asymptotics of the heat-trace

(o)
Tr(ae ) ~ a,(a, P) =972 1.2
(@) ~ ; (a, P) (12)
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where Tr is the operator trace. Each coefficient a.(a, P) can be written as
a;(a, P) :/ a-(a, P)(x) dvolg(x) (1.3)
M

where dvolg(x) := lg|/2dx with |g| == det(g,., ). The functions a,(a, P)(x) can be evaluated (various techniques exist for that)
and give expressions of the form

ar(a, P)(x) = trla(x)R(x)],

where tr is the trace on matrices and R, is a (local) section of End(V). The local section R, of End(V) is uniquely defined by

ar(a, P) = (ary), (1.4)

where
o(a) :=/ tr[a(x)] dvolg(x) (1.5)
M

is the natural combined trace on the algebra of sections of End(V') associated to (M, g) (the integral) and V (the matrix trace).
The choice of this trace is not unique, and changing ¢ changes R;. For instance, since M is compact, one can normalize the
integral so that the total volume of M is 1, and also the matrix trace such that the trace of the identity matrix is 1. In that case,
denoted by 1 the identity operator in I"(End(V)), the new combined trace ¢, satisfies go(11) = 1. In Section 5 ¢ plays an
important role since it corresponds to the unique normalized trace on the noncommutative torus algebra. Another possibility
for the choice of ¢ is to use a Riemannian metric on M which is not the tensor g in P, see Remark 2.6.

The aim of this paper is to present a way to compute R, by adapting the techniques developed in [1]. These techniques
were strongly motivated by a need in physics for explicit computations of a,(1, P), see for instance [2,3] and the reference
in [1] for the existing results on the mathematical side. The idea behind the computation of R, is to extract the real matrix
content of the coefficient a, which is related to the scalar curvature of the manifold M.

In Section 2, two formulas are provided for R,(x), both in local coordinates (Theorem 2.3) and in a covariant way
(Theorem 2.4)in arbitrary dimension and detailed in low dimensions. In Section 3, some direct applications are also provided,
for instance to a conformal like transformed Laplacian. Section 4 is devoted to the details of the computations (see also the
ancillary Mathematica [4] notebook file [5]).

In Section 5, another application is given in noncommutative geometry. Namely, we compute the conformally perturbed
scalar curvature of rational noncommutative tori (NCT). Since at rational values 6 = p/q of the deformation parameter, the
algebras of the NCT are isomorphic to the continuous sections of a bundle over the ordinary tori with fiber in My(C), they
fit perfectly with our previous framework. The irrational case has been widely studied in [6-18]. The results presented
in these papers can be written without explicit reference to the parameter 6. In the rational case, our results confirm
this property. Moreover, our method gives an alternative which avoids the theory of pseudodifferential calculus on the
noncommutative tori introduced by Connes [19] and detailed in [6,20]. In Appendix B, in order to compare to the results
in [8, Theorem 5.2] and [ 11, Theorem 5.4], we perform the change of variables from u to In(ut) and the change of operators
from the left multiplication by u to the conjugation by u, formalized as a substitution lemma (Lemma B.1).

2. The method and the results

In [1], the computation was done for the special case a = 1, for which a lot of simplifications can be used under the trace.
We now show that the method described there can be adapted almost without any change to compute the quantities R..
Moreover, we present the method in a way that reduces the number of steps in the computations, using from the beginning
covariant derivatives on the vector bundle V.

2.1. Notations and preliminary results

In order to start with the covariant form of P (see [ 1, Section A.4]), let us introduce the following notations. We consider
a covariant derivative V,, := 9, + n(A,), where 7 is the representation of the Lie algebra of the gauge group of V on any
associated vector bundles (mainly V and End(V) in the following). Let

oy = 8po(0,8"), ol = g"a, = g""g);(3,8"), B = 810(0,8"), B =g""'p, = d.g"".
The covariant form of P associated to V (see [1, eq. (A.11)]) is given by
P=—(gI"?V,1g|"g" uV, + "V, +q)
= —g""uv,V, — (p" + g""(Vuu) — [30" — B"lu)V, —q, (2.1)

where the last equality is obtained using g""39, In|g| + 9,8"" = —[3a" — B"]. Here, u is as before, and p*, q are as
v*, w from (1.1), except that they transform homogeneously in a change of trivialization of V. All these (local) functions are
Mpy(C)-valued (as local sections of End(V)), so that  is the adjoint representation:

Vuu = d,u+[Ay, ul, Vup® = 8 u+[A., p'l, Vuq = d,u+[Ay, ql.
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Let us introduce the total covariant derivative /V\,L, which combines V,, with the Levi-Civita covariant derivative induced
by the metric g. It satisfies

/Vﬂta" =Vua' +I,,0" =9,a" +[A,, "1+ I,,a", ’V\Hgo‘f‘ =0,
Vb, = Vb, — I}b, = 8,b, + [Ay, b1 — T},b,, V.8« =0,
for any End(V)-valued tensors a” and b,,, where r,,are the Christoffel symbols of g. Let us store the following relations:
Vu=V,u, (2.2)
gV, Vou = g™ (Y, Vou — I8, Vou) = gV, Vyu — [t — g1V, (2.3)

V" = Vup" — 1gos(8,8°P 0" = V,p* — la,pt.

Using Ja” — B” = g’ I/, one then has

P=—(g"V,uV, +p'V, +q) = —g""uV,.V, - [p" + g (V,)IV, — q. (2.4)

Notice that in these expressions the total covariant derivative ’Vﬂ, (which is the first to act) will never apply to a tensor valued
section of V, so that it could be reduced to the covariant derivative V,,.
The writing of P in terms of a covariant derivative V is of course not unique:

Proposition 2.1. Let V;L =V, + n(¢,.) be another covariant derivative on V. Then

P=—(g""V,uV,+p" VY, +q), (2.5)
with

P’ =p’ —g"up, + ), q =q—g"(V,up)+g" up.p, —p e, (2.6)
In this proposition, ¢,, is as p/: it transforms homogeneously in a change of trivializations of V.

Proof. This is a direct computation using relations like /V\L” = /V\Mu + [¢,. u] and /V\H’u = /V\,quu + [¢., ¢u]in (2.5) and
comparing with (2.4). =

Corollary 2.2. There is a unique covariant derivative V such that p* = 0. This implies that we can always write P in the reduced
form

P =—(g"V,uV, +q). 2.7)

Proof. The first part of (2.6) can be solved in ¢,, for the condition p” = 0. Indeed, using results in [21], the positivity and
invertibility of u implies that for any v, the equation u(g""¢, ) + (g""¢,)u = p” has a unique solution given by

wy . /+oo uit=1/2 p’ y—it=1/2 i
E =2 oo cosh(mt)
So, given any covariant derivative to which p” is associated as in (2.1), we can shift this covariant derivative with the above
solution ¢, to impose p”” = 0. W

This result extends the one in [22, Section 1.2.1], which is a key ingredient of the method used there. In the following, we
could have started with P written as in (2.7). But, on one hand, we will see that this is not necessary to get R, in terms on
u, p*, q (at least for r = 2). On the other hand, we will see in Section 5 that the covariant derivative which is naturally given
by the geometric framework of the rational noncommutative torus does not imply p* = 0, and we will then apply directly
the most general result. Obviously, it could be possible to first establish our result for the reduced expression (2.7) and then
to go to the general result using Proposition 2.1. But this would complicate unnecessarily the presentation of the method
and our results.

2.2. The method

The method described in [ 1] starts with P written as P = —g*"ud,,d, —v*d,,—w and leads to —P(e™f) = —e™s [H+K+P]f
where H = g"ug, &, and K = —i£, (v + 28" ud, ).
This can be generalized for a covariant writing of P. Using (2.1), one gets
= P(e"f) = €[ — g gk, + ik, (P + 8" (Vou) — [0 — 'lu+ 28" uV,)
+ g#vuvuvv + (pv +glw(vp,u) - [%av - ,Bv]u)vv + Q]f
= —e™[H + K + PIf, (2.8)
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with

H:=g"ug,&,,  K:=—ig,(p" +g""(Vou) — [30" — B"Ju+ 28" uV,). (2.9)
These relations look like the expressions of H and K given above (see [1, eq. (1.6), (1.7)]) with the replacements

> Vi, Ve pr gt (Vo) — (3o — Bu,  w g (2.10)
Asin[1], we have Tr[ae " ] = fdx trla(x)K(t, x, x)] with

K(t,x,x) = 1 ds o ixE (e—tP eix.s) _ 1 ds e tH+K+P)q — 1 1 /dg e—H—ﬁK—rP 1.

(2m)d (2r)d td/2 (27 )d

Here 1 is the constant 1-valued function. Notice that K(t, x, x) is a density, and that |g|~"/2K(t, x, x) is a true function on
M. Using the Lebesgue measure dx instead of dvolg(x) is convenient to establish the previous relation which uses Fourier
transforms (this point has not been emphasized in [1]).

The asymptotics expansion is obtained by the Volterra series

o0
eA+B — eA + 2/ ds e(lfs1)A Be(slfsz)A . e(sk,]fsk)A BeskA
k=17 Ak
where
Ay ={s=(s1,...,5)€ ]R"+ |0 < s <Sg_1 <--- <53 <851 <1}and Ay := g by convention.

ForA = —H and B = —/tK — tP, one gets

o0
e H VK] — o 7H L N (1 RIVIK +1P) ® -+ ® (VK + tP)] (2.11)
k=1
with
Fl€)B1® - @B = / dseC1DHE) By gl2=sHE) B, ... gy ~5H(E), (2.12)
Ak

fo(€)lz] ==z "),
where B; are matrix-valued differential operators in V,, depending on x and (linearly in) £, and z € C. Collecting the powers

of t1/2, one gets

o0

Tr(ae ™) ~ £ Zar(a, P)t/?.

£10
r=0

Each a,(a, P) contains an integration along &, which kills all the terms in odd power in +/t since K is linear in & while H is
quadratic in &: az,,1(a, P) = 0 for any n € N. For instance, the first two non-zero local coefficients are'

aua, PO = 57 ) [ e,

a(a, P)(x) = ‘i:)ff tr[a(x) / de / ds 51~ DH [ gls2=51H [ g=52H ]
Fay)

_ (Z%Wtr[a(x)/dé;/A ds e1=VH p gsiH]
1

(remark the coefficient |g|~"/? added here to be compatible with (1.3)).
The strategy to compute these coefficient is twofold. First, we get rid of the V,,’s in the arguments B;. This is done using [ 1,
Lemma 2.1], which can be applied here since V,, is a derivation: by iteration of the relation

k
fE)NB1® - ®BV, ® @Bl =Y fENB1 & ®(V,B)® ®B]
j=it1
k
Y ferE)NBi @ @B ® (VH) ® By ® - @ By, (2.13)
j=i

1 Notice the change with convention in [1]: a,, here corresponds to a, in [1].
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we transform each original term into a sum of operators acting on arguments of the formB; ® - - - ® B, = ]B%“ 1t
(for dlfferent values of k) where now all the B; are matrix-valued functions (of x and &), or, equ1va1ently, the ]B“ e are

MN((C)® -valued functions (of x only).
The second step of the strategy is to compute the operators applied to the arguments B{f 11 They all look like

o [ 4E 6 RENBL T € My(C),

where the f(§) akre] defined by (2 12) and depend only on u through H. As shown in [ 1], these operators are related to operators
Tep(%) : My(C)2“"" — My(C)®"" defined by

Tep(®) = i f ds f A8 &, -+ £y, €617 GO0, (2.14)

To.o(X) = (zﬂ /dg 16120 ¢ ppo (©),

®I<+1

where ||£]? = ghv&,&, and the Gi(s, A) : My(C) — MN((C)®k+1 are the operators

Ci(s,A)[Bo®B1® - @B ] =(1—51)B)A®B1 ® - ®@Bi+ (51 —$2)Bo ®B1A® - - - ® B
4+ +5xBo®B1 ®--- ® BiA.

Denote by m : MN((C)‘@'(+1 — Mn(C),By ® Bi ® - - - ® By — BgBq - - - By the matrix multiplication, then

) dBO / dg Em ce Sp.gfk(g)[Bl ® QB ]=mo Tk,p(x)[BO ®B1 ®---® By,
so that each function a;(a, P)(x) is expressed formally as a sum

a.(a, P)(x) = |g|~'/? Z tr[m o Ty, p(x)[a(x) ® B1(x) ® - - - ® B(x)]]. (2.15)

This sum comes form the collection of the original terms in K and P producing the power t'/ and the application of
[1,Lemma 2.1]i.e. (2.13). This sum relates the r on the LHS to the possible couples (k, p) on the RHS. The B; are matrix-valued
functions (of x) expressed in terms of the original constituents of H, K, and P and their covariant derivatives.

Let us mention here how the procedure introduced in [ 1] is adapted to the situation where we have the left factor a(x):
in[1], the relation between the Ty ,(x) and the fi(§ ) used a trick which consist to add a By = 1 argumentin front of B;®- - -®Bj
(the purpose of the x map defined in [1]). Here, 1 is simply replaced by a(x). But, since

m o Tjp(X)[Bo ® B1(X) ® - - - ® Bi(x)] = Bom o Ty p(x)[1 ® B1(x) ® - - - ® Bi(x)],
it is now easy to propose an expression for the factor R, as a sum
R =gl mo Ty ®Bi(x)® - ® B(x)]. (2.16)

One of the main results of [ 1] is to express the operators T, in terms of universal functions through a functional calculus
relation involving the spectrum of u (these relations take place at any fixed value of x € M, that we omit from now on). For
r>0,a R, andk € N, let

Iy i(ro, 11, ..., 1) = / ds[(1—=s1)ro + (st —s2)r1 + - - + s ™
Ak

= / ds[ro +s1(ry —10) + - - - + s — =)™,
Ak
so that

L i, ... T0) = 775 “.

In these functions, the argurrllents >0 are in the spectrum of the positive matrix u.
1 1 . .. . .
Denote by Ri(A) : My(C)® — My(C)®*"" the right multiplication on the ith factor

R(A)By®B1® - @Bl =By ®B1® - ®BA® - ® By,
then

Tip = 84 G(8)uy...19 Iaj24p.k(Ro(w), Ri(w), ..., Re(u)),
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with

1/2

£ = Gy f dg e ¥lioo = (2.17)

_guBg,
O Ppp—_— / Q5 £y, - £y €850l
— (p)
= 22pp! ( Z g/t,,(uli/;(z) o .gﬂp(Zp—])Mp(Zp)) - 2251,5 g(lh/l-r“guzp_]uzp)!
ﬂESZp
where S, is the symmetric group of permutations on 2p elements and the parenthesis in the index of g is the complete
symmetrization over all indices. Notice that the factor |g|'/? in g4 simplifies with the factor |g|~'/? in (2.16).
The universal functions I, ; have been studied in [1, Section 3]. They satisfy a recursive formula valid for 1 # « € R and
k € N*:

loj(Tos -+ T) = iy (M1 — 1) Ha—1.4=1(70, - - -+ T2, 1) = Ta—1.4=1(F0, - - -, Teet)]- (2.18)

It is possible to give some expressions for the I,  for any («, k). They depend on the parity of d. For d even, the main results
are that I, x are Laurent polynomials forN s n = (d —r)/2+k > k+ 1(d > r 4+ 2) and k € N*, while they exhibit a more
complicated expression in terms of In functions forN > n = (d —r)/2 + k < k(d < r). For d odd, the I,  can be expressed
in terms of square roots of the r;, but without an a priori general expression.

The recursive formula (2.18) can be used to write any I, x appearing in the computation of the operators Ty , in terms of
ly—k+1.1- The case @ = 1 appears in dimension d = 2: the fundamental spectral function is I 1, and a direct computation
shows that
Inrg—Innry

Li1(ro,11) =
ro—T

Using e")il = Z;’io %X”. where B, are the Bernoulli numbers, one gets, withx = Inry — Inry,

oo

rilia(ro, 1) E B lInrg — Inry]™
n=0

Arelation between the Bernoulli numbers and a;(a, P) has already been noticed in the computation of the modular curvature
for the noncommutative two torus in [7] (see Section 5).

2.3. The results for ay(a, P)

In the following, we restrict ourselves to the computation of a(a, P). This section gives the main results of the paper. The
computations are detailed in Section 4.

Let us introduce the following notation. For any x € M, denote by r; = ri(x) > 0 an element in the (discrete) spectrum
sp(u) of u = u(x) and by E,, = E,,(x) the associated projection of u. This implies that

Z r()Ero = T'()Ero

roesp(u)
where in the last expression we omit the summation over ry, as will be the case in many expressions given in the following.
Notice that 1 = ) E,, and EE,, = ¢

roesp(u)-To o, rl

Theorem 2.3. For P given by (1.1), ax(a, P)(x) = tr[a(x)Rz(x)] with

Ry = st [ V2 Ery + Fo(ro. 11) By (8, 0)Er, (2.19)
+ g""Fygu(ro, T1)Ero(a/Lauu)Er1 + " Fyu pu(ro, 11, Tz)Erg(auu)Erl(avu)Erz
+ Fyu(ro, 1) EywEy, + Fy u (70, 1) Efv"Ep,
+ Fyou(ro, 11, 12) Erg " Er, (8 W)Er, + Fauo(r0, 11, 12) Erg (3, W)Er v Ey,
+ 8uvFuu(ro, 1, 12) Erg " Er, v Er, + Fay(ro, 1) Erg (30" Er, |
where the sums over the ry, 11, 5 in the spectrum of u are omitted, the spectral functions F are given below, and
C= 2(0,0,8"") — 58" 8ps(0.0,8") + 8" 80 8ap(3,8"7 )(3,8°")
+ 8" 8 8up (3,8 )0,87F) — 58p0(3,8"")(3,8"°)
+ 15800(0,8"°)(0,8"7) — 5800(8,8"° (,8"7).



B. lochum, T. Masson / Journal of Geometry and Physics 129 (2018) 1-24 7

The coefficient c is given here in an arbitrary coordinate system. Since (2.19) is not given in terms of (Riemannian)
covariant quantities, c is not expected to have a good behavior under change of coordinates. In normal coordinates, ¢ reduces
to the first two terms and is equal to —R/6 where R is the scalar curvature. A covariant approach will be given in Theorem 2.4.

The spectral functions in (2.19) are given in terms of the universal function I/, 1 by

Fy(ro, 1) = laj2,1(r0, 1),
Ia2.1(ro, T0) — la2,1(r0, 11)

Fyy(ro, 1) = 219

d(ro — 1) 7
4rolgs2,1(ro, 10) + ((d — 4)ro — dr1)laj2,1(r0, 1)
Fasul(ro. 11) = —ro——" El(r "y Yy ,
0o— 11
4rol4/2.1(ro. 10) + ((d — 4)ro — dry)lgj2.1(ro. 11)

Fl(ro. 1) = [3a/ — B*1ro drg —11 )2 )

laj2.1(r0. 10) — laj2.4(ro, 1)

Fy (1o, 11) = —ayto dro— 1) sl3e, — Bulla2.a(ro. 1),
Ias2.1(ro, 1) — laj2,1(ro, 12)
Fualfo, 11,12) = = d(r r/) '
1— T2
Fou o(fos 11 Ty) = 2ro  laj2.1(ro, 7o) Iaj2,1(r0, 11) laj2,1(ro, 12)
TR =)o —12) | (m—ro)ri—r2) | (r2—rolrz— 1)
1a2.1(10, To) laj2,1(ro, 1)
Fy au(ro, 11, 12) = —2r1, : — -
L’Bu( 0> 2) Od(ro — rz)(m — rz) ! d(r] - T2)2

B ((d = A)rory — (d = 2)rory — (d — 2)r113 + dr2)lgp2.1(r0. 12)

d(rg — 12)(r1 — 12 )?

)

4ry
d(ro — r1)(ro — r2)*(r1 — 12)?
x [ro(r1 = r2)(ro — 2r1 + r2)la2.1(r0. 7o) + r1(ro — r2)*l4/2.1(ro, 1)
+ 3(r0 — 1)((d — 4)rory — (d — 2)rora — dry13 + (d + 2)r3)l4j2.1(r0. 12)]-

Fyuou(ro, 11, 12) =

Theorem 2.4. For P given by (2.1), ax(a, P)(x) = trla(x)R2(x)] with

Ry = sriam [aR1e " By + Gy(ro, 11) ExgGEr, + 8" Gogy(To. 11) Ery (V. Vo WEr, (2.20)

+ Gop(ro, 1) Eny(Vup™ Er, + 8" Goy 9T, 1. T2) Erg(VuwEr, (Vo u)E,
+ Gpﬁu(ro, 1, rz)Erop“Er](/V\,iu)Er2 + Ggu,p(ro, 1, rz)ErO(ﬁﬂu)Erlp“Er2
+ Gp,p(rOa I, rZ)EropMEmpuErz]
where the sums over the rg, 1, 5 in the spectrum of u are omitted, the spectral functions G are given below, and R is the scalar
curvature of g.
The spectral functions in (2.20) are given in terms of the spectral functions F by

Gy(ro, 11) = Fyy(ro, 11)
= Gq(11, o),
Gs9u(T0, 1) = Fapu(ro, 1) + Fau(ro0, 1)
= Ggou(r1, 10),
Ggp(ro, 11) := Fyy (10, 11),
Gy u(ro, 11, 12) i= Fauau(r0, 11, 12) + Fy au(To, 71, 72) + Fauo (o, 71, 12) + Fy (0, 71, T2)
= Gy, vu(r2, 11, T0),
G, 5u(r0, 11, 12) := Fy u(r0, 1, 12) + Fy o(10, 71, T2),
Gy p(T0, 11, 12) == Fau o (10, 11, T2) + Fy o(T0, 71, T2)
= =Gy, 9u(r2, 11, T0),
Gp.p(ro, 1, 12) = Fy o(ro, 11, 12)
= Gpp(r2, 11, 1o).
As shown in [1], the universal spectral functions I, x are continuous, so that all the spectral functions F and G are also

continuous, as can be deduced from their original expressions in terms of functions I, , given in the list (4.1) and the above
relations between the F and the G.
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Remark 2.5 (Homogeneity by Dilation). Using (1.2) and (1.4), we get R,(AP) = A"~9/2R(P) for any A € R’. The dilation
of P by A is equivalent to the dilations of u, v*, w, p*, q by A. Using I, k(ATo, ..., Ary) = A", k(70, . . ., 1x) and the explicit
expressions of the spectral functions, all terms in (2.19) and (2.20) are A-homogeneous of degree (2 — d)/2. O

Remark 2.6. The metric g plays a double role here: it is the metric of the Riemannian manifold (M, g) and it is the non-
degenerate tensor which multiply u in P. If one has to consider two operators P; and P, with tensors g; and g, on the same
manifold M, it may be not natural to take g; or g; as the Riemannian metric on M. It is possible to consider a metric h on
M different to the tensor g associated to P. In that case, we have to replace dvol, in (1.3) by dvol, and K(t, x, x, ) is then a
density for h, so that the true function is now |h|~"2K(t, x, x), and |h|~"/? appears in (2.15) and (2.16) in place of |g|~"/2.
Now, the computation of Ty , makes apparent the coefficient g4 given by (2.17) where the metric g comes from P. Finally,
in (2.19) and (2.20), the two determinants do not simplify anymore, and one gets an extra factor |g|/%|h|~"/? in front of R5,
which is now relative to gy(a) := fM trla(x)] dvoly(x). O

A change of connection as in Proposition 2.1 does not change the value of R,. This induces the following relations between
the spectral functions G.

Proposition 2.7. The spectral functions G satisfy the relations:

Goplro. 1) = — 10Gy(10, 1) +£7’0+—rr1 )Ggvu(ro, 7’1)’
0+n

12Gg(ro, 12) + (ro + 3r2)Go, (0, 12) + (o + 12)(r1 — 12)Gy, 9 (105 71, 12)

(ro +r2)(r1 +12)
10Gq(0, 12) + (310 + 12)Gg5,(To, 12) + (1o + 12)(11 — T0)G%y, $u(T0, T1, T2)
(ro + 1r2)(r1 + 10)

11Gy(ro, 12) — (10 — 211 + 12)Gg%,(T0, 12) + (ro — 11)(r1 — 12)G3y, $(T0, 11, 12)

(ro +r1)(r1 +12) ’

)

Gy p(ro, 11, 12) = —

’

Gy oulro, 11, 12) =

Gp,p(rOa r,r)=—

Proof. Inserting the relations (2.6) into (2.20), all the terms involving ¢,, must vanish. This induces the following relations
between the G functions:

10Gq(To, 1) + (o — 11)Gg5u(T0, 1) + (1o + 11)Ggp(10, 1) =
Gsp(ro, 12) — (to — 11)Ggy p(T0, 11, T2) — (10 + 11)Gp p(10, 1, T2)

Gq(r0, 12) + Ggp(ro, 12) + (11 — 12)G, 9(T0, T1, 12) + (11 + 12)Gyp p(T0, 71, T2)
2G59,(10, 12) — Ggp(r0, 12) — (10 — 11)Gy, 9u(T0, T1, 12) — (1o + 11)G, 9u(T0, 11, T2)
Gq(1o, 12) + 2G9,(r0, 12) + Gp(T10, 12)

+ (11 — 12)G%y 9ulo, 11, 12) + (11 + 12)Ggy (10, 71, T2)

10Gq(ro, 12) 4 (ro — 211 + 12)G5,(ro, 12) + (o — 12)Gg (10, 12)

+ (ro — r1)(r1 — 12)Gy 9u(T0, 11, T2) + (1o + 11)(r1 — 12)G,, 9 (70, T1, T2)

+ (ro — r1)(r1 + 12)Ggy, p(T0, 11, 12) + (10 + 11 )(r1 + 12)Gp p(T0, T1, T2)

One can check directly that these relations hold true. From them, one can solve Gg,, G¢,, 5, G, 9, and Gy p interms of Gy, Goe,,
and Gg,, ¢, This gives the relations of the proposition. W

=0.

These relations show that the four spectral functions G involved in terms with p* are deduced from the three spectral
functions involving only u and q. This result is not a surprise: from Corollary 2.2 we know that we can start with p* = 0,
so that R, is written in terms of the three functions G4, Gg%,, Go, ¢, only, and then we can change the connection in
order to produce the most general expression for R;. In other words, among the seven spectral functions G, only three
are fundamental.

The spectral functions G can be computed explicitly, and their expressions depend on the value of m. Ford = 2 and d = 3,
these spectral functions are written in terms of the following functions:

—3a® + a*b — 6a?c + 6abc + ac? + bc?

Qla b= 2(a—bPa—c)p ’
1 2 a+b a+c
Q(a,b,c) =5 [(a =0 T oarn =0 "t e —n In(c/a) ],

Qs(a, b, ¢) := 65abc + a*? +2b*? + 32 + Jac (Va + /)
+2(a(vb + v/c) + 2b(va + /o) + c(va+ Vb)),

Qua.b.c) = a+b+c+2vab+ 2yac + vbe '

Vbe(v/a + VbR(Va+ oAb + /e)
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Corollary 2.8 (Case d = 2). In dimension two the spectral functions G can be written in terms of log functions:

In(ro/rq) 1 ln(rO r)
Ry = ﬁ [éR + 45%‘151 + (1 - / )Ero(v”p Er,
ro— 11 o — 11 To -
1 In(ro/r1) -
— — (ro+1r = 2ror1 ———2)g* E, (V,V, u)E,
(To—r1)2(o+l O]ro—ﬁ )g TO( g U)r]

(ro +12)(ro — 211 +12)
(ro —r1)(ro — r22(r1 — 12)
— Qu(ro. 1. 72) In(ro/r1) — Qu(r2. 11, 10) In(ra /1)) Er (VW (V, 1)E,
+ Qalro. 11, 12) Erg(Vut)Er, p"Er, — Qa(ra, 1. T0) Eryp" Er, (V,u1)E,
(r1 —r2)In(ro/r1) + (ro — 1) In(ry /1)
2(rg — r1)(ro — r2)(r1 — 12)

EropuEr,0"Er, |-

When d = 2m > 4 is even, all the involved functions are Laurent polynomials as a direct consequence of [1, Prop. 3.5]:

+1-m .—£—1
Gy(ro, 11) = E g i
0<{<m-2
o = 2 : (m=t=1)(¢+1) L+1-m —L—1
GVVu(r()v r1) = m(m—1) To L ,
0<¢{<m-2
. _ _ m—e—1 L+1-m . —€—1
Geplro, 11) = § : mm—1p 0 1
0<{<m-2
SN _ Z (2041)(2k—2m+3) k+l —m —k—1.—€—1
GVU,Vu(r()v r, r2) - - 2m(m—1) T T, s
0<{<k<m-2
~ — 241 LkH1-m o l—k—1 (-1
Gy gullo, 11, 12) = — Z Zm(m—T) 10 T P
0<l<k<m-2
~ — § 2k—2m+3 k+1-m —k—1_.—€—1
GVu,p(r()v I, rz) - - 2m(m—1) r() r rz )
0<l<k<m-2
1 k+1-m £—k—1_.—¢— 1
Gpp(ro, 11, 12) = — } Zmim=1) 10 I )
0<{<k<m-2

This implies the following expressions for R,:

Corollary 2.9 (Case d = 2m Even and d > 4). Using the expressions of the spectral functions G as Laurent polynomials, one has

_ 1 1 —m+1 1 L+1-m ., —0—1 m—_0—1  L+1-m(T .y, ——1
R2 = 22mym [6Ru + Z m—1 u qu Z m(m—1) u (Vup )u

0<t<m-2 0<t<m-2
(M—L=1)(+1) Gy e+1-m(G —e—1
- E Tmme1n__ & (Vi Vyuu
0<¢{<m-2
e+ D)(2k=2m+3) vy k+1-m —k—1 —0—1
-y B g N (Vo
0<{<k<m-2
_ 2k—2m+3 , k+1-m S O—k—1 0., —0—1
E Smim—1) U (V,u)u ptu
0<{<k<m-2
_ 2041 kH1—mo g b—k—1,S —0—1
E Fmgm—1) U plu (V,u)u
0<{<k<m-2
o 1 k+1—m O—k—1 ., —L—1
Z 2m(m—1) u pbulu p'u ]
0<t<k<m-2
_ _1 1p,—m+1 1 L+1-m . —l—1
= s | gRu + E —Lu qu
0<{<m-2
_ (m—e-1) wy £4+1-m —t-1
2 : m(m=1) lg [ (e + )V, ”+pV)]
0<f<m-2

- Y s & [k = 2m 4+ 3)V,u -+ p, Jut T [€+ DV +p JuT.

0<l<k<m-2
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Corollary 2.10 (Case d = 4). In dimension four these expressions simplify further to:

Ry = ﬁ [(Ru™" +ulqu' — %u’1($ﬂp“)u’1 — %g’“’uq(?ﬂﬁ,u)u’l

+ %g’”u‘l(’V\Mu)u_l(’v\vu)u_l +3 u™ (Vuu'prut — %u_]p"u_l(’v\uu)u_1

— lu_lpuu_lp“ -1

Ru~! 11w ~1ry (V 1y Lgmy=1rg 4 -1y -1
s [fRu  u qu = 3 g [V (Vou 4 p)lu T+ g [V — puduT Va4 pyJu .

Corollary 2.11 (Case d = 3). In dimension three the spectral functions G can be written in terms of square roots of the r;
(see [1, Prop. 3.4]) and this leads to:

Rz = 8+ﬂ [%R + ;quEr] zm—i_ \/ﬁ >
4 JTor(To + /1) JTor1(/To + /1)
2
/o + (V1o + «/rz) gE,y (Y, Y WE,
JTor(/To + /1)
Qs(ro, 11, 12) g
5 T + TR+ VP T P
+ §Q4("o, r, Tz)ErO(VMU)EﬁPMErZ — §Q4(7’2, r1, 70) EryppEr, P Er,
2 Vo + /ity
3 JTorira (/o + /T1)(J/To + /T2)(J/T1 + J/12)

To conclude this list of results given at various dimensions, we see that we have explicit expressions of R, for d even, and
moreover simple generic expressions for d = 2m, d > 4, while for d odd it is difficult to propose a generic expression.

- % Ero(/v\upM)Er

+ Ery(V,)Er, (Y, W)E,

EroPuEr,p"Er, |.

3. Some direct applications
3.1. Thecasea =1

When a = 1, for any k > 1, a cyclic operation can be performed under the trace:

f(rOs T, ..., rk)tr(EroBlEr182 o BkErk) :f(rOa Ty, oo, rk)tr(ErkEroBlErlBZ e Bk)
= 8r0,rkf(rOs I, ..., rk)tr(ErkErgBlEn By ---By)
=f(ro,r1,...,10) tr(E;,B1E By - - - Ey,_ By).
This implies that in all the spectral functions f(rg, 11, ..., 1) one can put ry = ro (remember that all the spectral functions
are continuous, so that r, — rg is well-defined).
In [1, Theorem 4.3], a5(1, P) has been computed for d = 2m even, m > 1. Let us first rewrite this result in terms of
spectral functions:
crg ™ Eg 4 19 ™ Eow 4+ "2 [3a — pH g™ Eg(8,u) — =28 5™ Eo(9,,9,u)
m—1
+ %,8/1. r()_m EOUM - % r()_m EO(auvﬂ) - ﬁguv Z r()_l_lrf_m EOUMElvv
=0
-1

m—1
+ oo > M =201 T T Bt Er(,u) + g Y [Me? — LD T B, u)Eq (0,u).
=0

3

6

~
I
o

Notice that:
gIJ-VZ r_[ 1 f m EoUN’E]U g,er_e 1 f m E]UVE()U“ gﬂ“Z r1£ 1 é m Elquov )

if we change £ to m — £ — 1 in the summation and we use the symmetry of g,,,. Then, to show that the spectral functions F
reduce to the ones above, one has to use the symmetry ro <> r; for some terms. A direct computation gives

Fy(ro,m0) = 15",
Fu(m,nﬂ== e 2[ at — g™,
Fyau(ro, 10) = —mTJ o
Fopu(ro,10) = 3Bu1g ™,
Fyol(ro, 10) = —3 1™,
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1 STyt
3 [Fu.v(r0, 11, 10) + Fy (11, 1o, 71)] 4er ,
m—1
1 2 Mmeton) et
HFouou(ro, 11, 70) + Fauou(ri, 1o, )] = y_[Me2 — Aty pre=tptom,
=0
m—1

1

Fy ou(to, 11, T0) + Fou,o(11, To, 11) = 2m (m—20)rg ™,

i

In the last expression, under the trace we have tr(EO(auu)El V) = tr(Eqv"*Eo(9,u)), and we need to sum the two functions
F, sy and F, ,, with their correct arguments.
These relations show that (2.19) reproduces [1, eq. 4.15] when a = 1.

3.2, Minimal Laplace type operators: u = 1

Starting from (2.1) when u = 1 one gets
P=—g"V,V,—(p" —[32" = 'V, —q

and two simplifications occur in (2.20): all derivatives of u vanish, and the spectrum of u reduces to sp(u) = {1}, so that all
spectral functions are taken at r; = 1 and E;; = 1. The result is then

Ry = sa,a72 L [§R+ Gy(1, 1) g + Ggp(1. 1)V, V" + Gpp(1,1,1)p"py 1.
A direct computation gives Go(1, 1) = 1, Gg,(1, 1) = —5, and Gp p(1,1,1) = —%, so that
Ry = W[éRqu— ’vup pll-p“]' (3.1)
As in Proposition 2.1, we can change V,L to /V\L = 6# + ¢, and solve ¢,, in order to get p’* = 0. From (2.4) withu = 1,
one has
gV +q =" (Vu+ ) (Vo + 0)+ 4 =" VY, + g (Vi) + 28 ¢,V + 8" by + ¢
= g‘“’% v, +p"/V\M +q
with p* = 2g"’¢, and q = q' +g""( M([)U) 8"’ ¢, ¢,. This is solved for ¢, = 1g,,p" and implies ¢’ = q— %’V%p" — 1P Py
Injected into (3.1), this gives R, = Zdnd/2 [6R + q']asin [23, Theorem 3.3.1].
3.3. Conformal like transformed Laplacian
Let us consider a positive invertible element k € I"(End(V)), a covariant derivative V,, on V and A = —g‘“’/V\,;V\v be its
associated Laplacian. Motivated by the conformal deformations worked out in [6-8], we consider the operator
P :=kAk = —g“”kzﬁlﬁ, — Zg‘“’k(%\uk) V, + k(Ak).

Actually, it is worthwhile to quote that the conformal change of metrics on the noncommutative tori is not as straightforward
as copying the notation of the commutative tori since deep theories in operator algebras are involved. However, the result
obtained in this section for the operator P will be used to compute R, for the noncommutative tori in Section 5.

The operator P can be written as in (2.4) with

u=1~k, p’ =g"k(Vk)—g"(Vkk,  q=—k(Ak).

Application of Theorem 2.4 gives

RgAk — 2y d/z[ Rrid/ZH Er, (3.2)
+ FEt¥(ro, 11) Erg (AK)Er, + Féei(ro, T1. 12)8"" Erg(V,uK)Er, (Vuk)E, |
with
Fi2¥(ro. 11) = —/To Gq(ro, 1) — (/7o + /T1) Goou(ro. T1) — (/To — v/T1) Gep(To. 1), (3.3)
FSiiTo, 11, 72) = 2Gg9,(10. 12) (3.4)
+(~/%+f)(f+«/5)6 Suoullo. 11, 12)
+ (Vo = Vr)(Wr + V12) Gy 54 (To,rurz)
+ (V1o + V1)W1 — +/12) Gy p(ro, 11, T2)
+ (Vo — /)W — «/E)G p(r0, 11, 12).
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Using Proposition 2.7, one has

JTor1 (/To + /T1)[Gy(ro, 1) + 2Go,(r0, 11)]

o+ 1

kAk
Fi¥(ro, 1) = —

4. Details of the computations

In this section we give some details on the computations to establish Theorems 2.3 and 2.4. These computations can be
done by hand but the reader can also follow [5].

The equation of (2.19) requires to compute the terms in the sum (2.16), which itself requires to compute the arguments
B; ® - - - ® By and the operators Ty p.

For r = 2, the list of arguments has been evaluated in [ 1, Section 4.1] (starting with the expression (1.1) of P) as well as
their contractions with the tensor G(g),.,...,.,,- We make use of these results below. Then the computation of the operators
Ty p reduces to the computation of the universal spectral functions Ig/>4p k. As noticed in [1], only the values k = 1, 2, 3, 4
have to be considered.

Below is the list of the evaluation of these arguments in the corresponding operators Ty ,, where the following functional
calculus rule (and its obvious generalizations) is used

n n Ng— no+nq+--+ng_q
flro, 1, ..., ) EQuE uME,, - - - u"™1E, =1, f(ro, 1o, ..., 10)Eyy,

where summations over r; in the spectrum of u are omitted. In the following, the symbol ~~ is used to symbolize this
evaluation.
For k = 1, there is only one argument:
w ~ Id/2,1(r07 r1) ErOU)En .
For k = 2, one has:

— 38" 80 (3,0,8” VU @ U~ —38"85(8,:,8"7 ) 151as241,2(T0, To, T0) Erg
—8"8,5(0,8°7 ) u ® d,u ~ —g""8,5(0,8"7 ) rolus241,2(T0, To, 1) Ery (3, W)E, ,
- jgw U® 0,0,u ~ —gg Y 1old/241,2(T0, To, T1) Ery (3,0, W)E;,
- %gpa(augpa)vﬂ QU ~ _%gpa(augpa)rlld/2+1,2(r07 r1, 1) E vE;,
— 40" ® du ~ — L lap41.2(r0, 11, 12) Erg vV Er, (3, 0)E,
- %guv v v~ _%g;w Iij241.2(r0, 11, 12) Erfy v/ Er 0V E;,
—u® 9, v" ~ —T1oly41,2(r0, To, T1) Erg (3, 0" )E,,

For k = 3, one has:

(89800 (8,0,8”7) + 2(8,,0,8"") + 800 (38" N(3,8"7) + 280 (38" (3,87
+ 28"8008ap(3,8"7 0,8°") + 2" 8po Bup(8,8" N8P u@ U U
[ "800 (3.8,87) + 2(8,,8"") + 8o (3,,8""N(0,8"") + 28,0(8,8"* )(3,8"7)
+ 18"8008up(3,8"° )(3,8%F) + glwgprrgaﬂ(augpa)(avgaﬁ)] ralaj2+2.3(To, To, To, T0) Ery »
(d+6)[58"2ps(0,8"7) + (0,g"" U@ u® d,u
~ (d + 5)[lg/wgpo(3ugm) (308" N 1elas2+2.3(o, To, To, T1) Erg (3, U)Ey,
(22" 8,0 (3,877) + 2(0,8" U ® duu @ u
w [HAgi g, (8,877) + 2(3,8" N ror1ldj2+2,3(r0, To, 1, T1) Erg (3, W)Er,
(d+2 g u®dudu~ (‘“;z)zg"“ rolas2+2,3(ro, To, 1, 12) Erg (0, WE, (3, WEr, ,
(d + 2)g"™ U@ U 3,0,u ~ (d + 2)g"" rglasa42.3(ro, To, To, 1) Ery (8,00 W)Ey,
[1800(3,8"7) + 8,2V QuA U+ UV Qu-+uURu® V")
> [380(0,8"7) + u(,8” ) [THlaj242.3(T0. 11, 11, T1)
+ rorilaj242, 3(T0, r0, T1,T1) + 1glas242.3(ro, To, To, 11 )] E v E;, ,
20 @ u® d,u) ~ 12 rlId/2+2 3(ro, 1, 11, 12) Erg v Er, (8, W)E, |
2(u ® duu ® V") ~ B2 rolya42 3(ro, 1o, 11, 12) Erg (3, 1)Er, v Er,

2 (u @ v ® 9,u) ~ B2 1oly/212,3(r0, To, 11, 12) Erg " Ery (8, 0)Er, .

(=9 Q
SRR
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For k = 4, one has:

3[ = 28"8008up(08" 0,87 ) — 8" 810 8up(08"* N(3u8° ") — 28,6 (0,8"")(3,8"7)
- 2gpa(8ug“”)( 18"7) — 280 ( ,Lg””)(aug“" Nuoueueu
~3[ = 28" 80 8up(d g”" )(0,8%7) — 8" 800 8up(0,87 )(3,8°7) — 28,6 (3,8"" )(3,8"7)
— 28,5(0,8"7)(0,8") — 285 (0,8"7)(3,g"° )] rgld/2+3,4(T0, To, To, To, 7o) Ery
— (d+4)[38"" 20 (3,8"7) + (3,g""BUR U U Jyu
+2uQu®iu@u+u® i, u®uuj
—(d 4+ 4)[38" 8o (3,8"7) + (8,8" " N[3rgla/243.4(r0. To, To, To, T1)
+ 2rgr1l4/243,4(T0, To, To, T1, T1) + ToTlaj2+3.4(Fo, To, 1, 11, T1)1Ery (9, U)Er, |
—Hd+4)(d+2)g"" QU U U U+ U ® Il ® U d,u)
~ —%(d + 4)(d + 2)g"" [21314/2+3,4(To, To, To, T1, T2) + ToT1laja+3.4(r0, To, 1, 11, T2)]
Ey, (0, u)E (O, u)E, .
The coefficient ¢ and the spectral functions F are evaluated by collecting these terms:

Ci= 3(3,0,8") — 158" 8 (3,0,8"7) + 758" 8o 8ap(0,8"° )(3,8°7)
+ ﬁglwgptrgaﬂ(augpa )( avgaﬂ ) - %gpd(ap.g#v )( avgpg )
+ izg,ocx ( aﬂgvp )( avglw ) - %gpa ( aug/m )( avgva )a

Fy(ro, 1) = laj2,1(r0, 1),
Fyy(ro, 1) = — rolda1,2(10, To, 1),
Fyou(ro, 1) = — % rolaja+1.2(ro, o, 1) + (d + 2)1314/212,3(r0. To, To. T1),
Fj(ro,11) = — a" rolaja+1,2(r0, To, 1) + (d + 6)[%01” + B"11¢laj212,3(ro, To, To, T1)
+ [dzﬁa” + 2B"1ror1lasa+2,3(ro, 1o, 1, T1)
— (d+ 450" + B*1[3r4l4/243.4(r0. To, To, To, T1)
+ 215711424340, To, To, T1, T1) + Tor3 laj2+3,4(Fo, To, T1, 71, T1)],
Fou(ro,m) = — 3o, rilajas12(ro, 1. 11) + 3o + B ] [ laja42,3(ro, 11, 11, 11)
+ rorilasa42,3(ro, 1o, 11, 1) + relaj2+2,3(ro, To, To, 1)1,
Fy (0. 11, 12) = — 3 lajas1.2(r0, 1. 12),
Fauo(To, 11, 12) = 42 rol4/242 3(r0. T0. 71, 12),
Fyou(ro, 11, 12) == — %Id/2+1,z(ro, r, )+ dzﬂ r1laja+2,3(r0, 11, 71, 12)
+ B2 roly242,3(r0, To. T1. 12),
Fyuou(ro, 11, 12) = (d+2)2 rolaja42,3(ro0, 70, 11, 12) (4.1)
(d+4) (d+2)

2
V[21214/243.4(T0, Tos To, 15 T2) 4 ToT1laja13.4(o, To, 11, 11, T2)].

As in [1, Section 4.3], the strategy to compute (2.20) could be to make the change of variables (u, v*, w) — (u, p*, q).
Here we use another strategy which simplifies the computation since it is based on (2.8), (2.9), and (2.10).

Indeed, as already noticed, one can apply verbatim the computation of the arguments and their contractions with 9,,
replaced by V,,, and at the same time, using p* + g*"(V,u) — [%oz" — B*]u in place of v#, and q in place of w. So, (2.19) can
be replaced by

—d
cry /24 Ery + Fj(ro, 11) Erg (Vu)Er, + 8" Fagu(ro, 11) Ery(V Vo U)Er,

+ g"Fyu,ou(ro, 11, 12) Erg (V W)E (Vo WE, + Fy (1o, 1) EqywEy, 4 F, (o, 71) Ev"Er,
+ F, u(ro, 11, 72) Eg v Er (V W)Er, + Fau (1o, 11, 12) aEr (V, u)E VM E,,
+ guFo (1o, 11, 12) Erg v Er 0 Er, + Fyy (10, 1) Ery (V, 0")E,,
The next step is to replace V,, by ’V%. We use (2.2),(2.3) and
vV, =v,p" +(9,8"" (Vyu) +g""(V,Vyu) — [ o — 3, 8" u— oz" BH IV, u)
= V,p" +g" (V,Vou) + (V) — [18,0" — 8,"Tu
= V" + 1o, p" + (Y, Vou) + (V) — [18,0" — 8,8 u.
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This leads to a new expression containing the terms in (2.20), with the functions given in the list after Theorem 2.4, to which
we have to add the two terms G" (ro, r) E,O(V u)Er, + Gp (1o, 11)Er,p"E;,, with
G&,(ro, 11) = Fy(ro, 11) + g"" Fy u(ro, 1) + B" Fau(ro, 11)
+ [30" — B*1[Fspu(ro. 1) — roFy 0u(To, To. 1) — 1Fau,u(ro, 11, 1)
— 1oFy (0, 10, T1) — 1Fy (70, 11, T1)],
Gp,u(ro, 1) = Fy u(ro, r1) + %OIMFau(ro, 1)
— [5 — Bul[roFy.o(To. To, 1) + T1Fy o (ro. 11, 11)].
A direct computation performed using the expressions of the spectral functions F in terms of I/, 1 shows that
G%u(rm r1) = Gp(ro,r1) =0,
and the following symmetries

Gy(ro, 1) = Gg(r1, 10), Goou(ro, 1) = Gooy(re, 1o), Gou ou(r0s 11, 12) = Gy 9u(r2, 11, T0),

so that, using Proposition 2.7, one gets

Gy p(T0, 71, 12) = —Gp 5y (12, 11, To), Gp,p(To, 11, 12) = Gp p(12, 11, To).

—d/2+1

The coefficient in front of r,) E, is

%R =C— Zaﬂﬂu 2:8 Isﬂ + 8/1.0[ - *8//./3 - ]GOIHO( + a/tﬂ“ :8/1,/3”’

where R is the scalar curvature of the metric g.

The spectral functions G can be written in terms of log functions for d = 2 (see [1, Cor. 3.3]), as Laurent polynomials for
d > 4 even (see [1, Prop. 3.5]), and in terms of square roots of r; for d odd (see [1, Prop. 3.4]). This completes the proof of
Corollaries 2.8,2.9,and 2.11.

5. Applications to the noncommutative torus

In this section, we first apply Theorem 2.4 to the noncommutative 2-torus at rational values of the deformation parameter
0, for which it is known that we get a geometrical description in terms of sections of a fiber bundle. Some computations of
ay(a, P) for specific operators P have been performed at irrational values of 6 to determine the so-called scalar curvature
(our R;) [6-11,13-18].

We now show that we can apply our general result at rational values of & and get the same expressions for the scalar
curvature R, which appears to be written in terms of -independent spectral functions. In particular, its expression is the
same for rational and irrational 6.

Let ® € My(R) be a skew-symmetric real matrix. The noncommutative d-dimensional torus C ('ﬂ“(’,)) is defined as the
universal unital C*-algebra generated by unitaries Uy, k = 1, ..., d, satisfying the relations

UpUp = 27Oty Uy, (5.1)

This C*-algebra contains, as a dense sub-algebra, the space of smooth elements for the natural action of the d-dimensional
torus T¢ on C('Jl“(i_) ). This sub-algebra is described as elements in C('H“é)) with an expansion

z : k1 kq
a= ak1 """ kg U Ud

where the sequence (ax,, ... k,) belongs to the Schwartz space 5(Z%). We denote by C°°(’]I“(j,) ) this algebra. The C*-algebra C(’H“(’,))
has a unique normalized faithful positive trace t whose restriction on smooth elements is given by

K
Z ... Uy Ug?) = do 0. (5.2)
(kj)ezd

This trace satisfies t (1) = 1 where 1 in the unit element of C(’]l“(f) ). The smooth algebra C°°(’]I“(i)) has d canonical derivations
8, w =1, ...,d, defined on the generators by

8/1.(”/{) = 5/”( iUk. (5.3)

Foranya € C(Td@ ), one has §,,(a*) = (§,a)* (real derivations).
Denote by # the Hilbert space of the GNS representation of C (Tg) defined by t. Each derivation §,, defines a unbounded
operator on #, denoted also by §,,, which satisfies cSL = —4§,, (here T denotes the adjoint of the operator).
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5.1. The geometry of the rational noncommutative tori

In the following, we consider the special case of even dimensional noncommutative tori, d = 2m, with

9.1X e 0
0 1
&= ¢ . o | whereyx:= 1 o) (5.4)
0 - Onx
for a family of deformation parameters 64, ..., 6;,. Then

C(TEZ") ~ C(T,) ® - - ® C(TF, ).

When d = 2 and & = p/q, where p, q are relatively prime integers and q > O, it is known that C(Té) ~ ['(Ag) is
isomorphic to the algebra of continuous sections of a fiber bundle Ay in My(C) algebras over a 2-torus T2, as recalled in
Appendix A. Similarly, ford = 4, with6; = p,/q; and 6, = p2/qo, C(T‘é ) is the space of sections of a fiber bundle in M, 4,(C)
algebras over a 4-torus Tj ; x Tj ,.

Moreover, in the identification C Oo(’[Fé) >~ I"*°(Ap), the two derivations §,, are the two components of the unique flat
connection V,, on Ag.

This geometrical description allows to use the results of Section 2 to compute a,(a, P) for a differential operator on H of
the form P = —g*"ué,, 8, — [p" + g""(8,.u) — (%a" — BYuls, —q.

5.2. The noncommutative two torus

In this section, we compute the coefficient a,(a, P) on the rational noncommutative two torus for a differential operator
P considered in [6,8,9,7] for the irrational noncommutative two torus. Let us introduce the following notations.
Let t = 71 + it € C with non zero imaginary part. We consider the constant metric g defined by

gh'=1 gl=g"=%)=nu, g2=I/

with inverse matrix

_ 2 _ P2 g — %) _ _u — 1 _ 1
En=jy3op = 2 812 =821 = —xyp2 T 2 & =y 2
We will use the constant tensors
el =1, e =1, el=1, e =r, h*" = ete”,

which imply h'" = 1, h'? = 7, h?! = 7, h*> = |t|. Then the symmetric part of h* is the metric, g** = 1(h*" + h"*), and
guwéte” =0.
On the (GNS) Hilbert space #, consider the following operators §, ' and the Laplacian:

§i=&"8, =8 +18, 8 =—€"8,=-8—15
A=6818 = —€te"s,8, = —h""8,8, = —g""8,8,.

Fork € C""(Td@ ), k > 0, the operator P is defined as

Py 0
P <01 Pz) (5.5)

with
Py = kAk = —g""ké,.8,k = —g’”kzéﬂév —2g""k(8,k)8,, — g"VK(8,,8,k)
= —ulg““é,ﬁv — v’f&,t — wq,
Py i=8TK*8 = —€"€"8,k*5, = —&"e"(8,k*)8, — "€ k8,8, = —g" k8,8, — h*"(8,k*)5,,

. I
= —uzg‘“’(SM(Sv — U, 8# — Wy,

so that
uy = k2, vl = 2" k(8,k), w1 = —k(AKk),
u, = k2, vl = h*(8,k%) = WV [K(8,k) + (8,k)KI, wy = 0.

For the forthcoming computations, since the metric g is constant, we havec = R = a* = g* = 0, 6/1 =V, =46,
(the last equality being a property of the geometrical presentation of C"O('ﬂ“fj ), as recalled above), F); = F,, = 0. Here
lg|'/? = det(g,,)/? = 7, '. We can write P; and P, in the covariant form (2.1) with

up = k2, pi = g™ [k(8,k) — (8,k)k]., q1 = —k(Ak),
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uy = k2, py = (b —g““)[k(zSuk) + (Svk)k], g2 =0.
Let

1= e — 1,
so that h*V = gtV + f*¥ and h"* = gh¥ — f*¥ and define
Va(avb + 3ayc — ac — Vabc — 2b/c)

- b)(va — vb)(Va— c)?

a(v/b + /)
(a—b)Xva—vbla—c)
with the following (spectral) functions

ro — 1 — /Tor1 In(ro /1)

Qg(a, b, c) =

’

Qf(a,b,c) =

Fak(ro, 1) = (Vo= JnP , (5.6)
F*Y (I‘o, ry, rz) = gw(\/%_’_ \/E)(N/F_ 2\/ﬁ+ \/E) +fuv(\/%_ \/5)2 (5.7)
ok (Vro = VI)(YTo — 12211 — /12)

+ [g"VQq(ro, 11, 12) — [V Qs (1o, 11, 12)]In(ro /1)
+ [8"VQq(r2, 11, 10) — ' Q(r2, 11, o)1 In(r2 /14).

As in Appendix B, we use in the following result the simplified notation ¢(a) instead of ¢ o L o S(a), where ¢ is defined in
(1.5), while L and S are defined in Appendix A. Moreover, ¢ and the trace t defined in (5.2) are related by the normalization
(A3).

Proposition 5.1. For the 2-dimensional noncommutative torus at rational values of the deformation parameter 6, one has
ay(a, P) = g(aRy) for any a € C(T%) with

Ry = é [Fak(ro, rl)Ero(Ak)Erl + FSL,:;,{(TO, ry, rZ)ErO((SuI()Er](Svk)ETZ 1. (5.8)

Since we are in dimension d = 2, the appearance of the log function in this result is expected. It is shown in Appendix B
that this result coincides with a previous one in [8, Theorem 5.2] for the irrational noncommutative two torus.

While R, does depend on the deformation parameter 6, and in particular if it is irrational or not, the spectral functions F
and Fg‘k‘;k do not. This universality was obtained in [7]. Nevertheless, the fact that R, can be written in terms of f-independent
spectral functions needs a more conceptual interpretation.

The spectrum of the differential operator P depends on the differential operators §,, and some multiplication operators
by elements of the algebra (written here in terms of k and its derivatives §,k, §,.6,k). On the one hand, the spectrum of the
closed extension of the operator §,, in the Hilbert space of the GNS representation consists only of eigenvalues ik, k,, € Z,
associated to eigenvectors Uf ... Uf;”, so that it does not depend explicitly of 6. On the other hand, the computations of R;,
performed here or in [6,8,9,7], are based on formal manipulations of the product in the algebra, in particular they do not use
the defining relations (5.1). This explains why these methods bypass the & dependency and give rise to some expressions in
terms of #-independent spectral functions. Notice that for specific values of 9, for instance & = 0 (the commutative case),
these expressions can be simplified. So, one has to look at (5.8) as a “‘@ universal” expression for R,.

Proof. One has az(a P) = ay(a, P1) + az(a, P;). Denote by R; (resp. RZ]), 72(2 ) the expressions associated to P (resp. Py, Py).
Then one has R, = + R(2

The operator P; is a conformal like transformed Laplacian, so the computation of R(Z]) is a direct consequence of (3.2) in
Section 3.3. Here the metric is constant, so that R = 0, and it remains

R(zl) =17 [F nak(ro, 1) Ery(AR)E, + F, (1) akak(rOa 1, rZ)ET0(8M1<)ET1(5Vk)Er2]’
where, using (3.3) and (3.4),

Fayar(ro, 1) = —+/To Gy(ro. 1) — (v/To + /T1) Gesu(T0. 1) — (/To — +/11) Gop(T0. 1),

F(‘;;)akak(rOa r, ) = 2g* va(ro, 1)

+ 8" (V1o + V1111 + V/12) Goy 5u(ro, 11, 12)
+ 8" (V1o — V1111 + /12) Gy 5u(T0, 11, 12)
+ 8""(V1o + V1)W1 — /12) Gy p(ro, 11, T2)
+ "' (Vo — V111 — /12) Gp p(ro, 11, 12).
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For the operator P,, one applies Theorem 2.4:

RE = 1L [(VTo + /1) Gowulro, 11) 8" Erg (8, 8,k)Er, + 2Gowy(To, 12) 8" Ery (8, K)Er, (8,K)Er,
+ (V1o + V1)W1 + /12) Goy $ulT0, T1, 12) 8"V Erg (8,.K)Er, (8,K)Er,
+ (V1o + V1)W1 + V12) Gy 5y(r0, 11, 12) (B — g)E; (8, k), (8, K)Er,
+ (V1o + V1)1 + V12) Gy (10, 11, 12) (WY — g7)E; (8, K, (8, K)Er,
— (V10 + V(T + /12) Gy p(To, 11, 72) 8" Er (8, k)Er, (8, K)E:, |
= = [Fyak(ro, 11) Er(AK)Ey, + Flyokon(T0, 15 72) Erg (8, K)Er (8,K)Er, 1,

with
Foyak(ro, 11) = —(/To + /11) Gogu(ro, 11),
F(z)akgk(ro, ry, Tz) = 28" Goy(r0. 12)

+ 8" (V1o + V1)W1 + V/12) Goy 5u(To, 11, T2)
+ (B — g"")(Vro + V(W11 + V/12) Gy 9u(To, 11, T2)
+ (W = g"")(/To + V/T1)(WT1 + /12) Ggy (0, T1, T2)
— g (Vo + /X f+xﬁz p.p(T0 T1, T2).
Then Fap == Fi, ak+ Fa, ak and Fjyy,, := F{'5 o 4 F3 oy Simplify as in (5.6) and (5.7). The expression obtained for R, shows
that it belongs to C(Tﬁ)) and acts by left multiplicationon 4. ®

5.3. The noncommutative four torus

Our result applies to the computation of the conformally perturbed scalar curvature on the noncommutative four torus,
computed in [11,14]. In order to do that, as in dimension 2, we perform the computation at rational value of 6 as described
at the end of Appendix A.

The operator we consider is the one in [11], written as

Ay =Kk 2k + K291k 21k + K? 92k 23,k + k* k20,2

with (in our notations) k? := e", 3; 1= —8; +i83, 31 := —8; — i3, & 1= —8; + i84, and &, := —§, — i64. Indeed, in [11,14],
the derivations are §,, = —id,,. This leads to

Ay = —2[K2g"" 8,8, + 8" (8,k*)8, + " (8,8,k%) — g (8,k* )k 2(8,k*)]
=: 2P.

The metric g*" is the diagonal one in [11], but in the following computation, we only require g” to be constant.
Let us mention that in [11,14], the computation of the scalar curvature is done using P defined above (and not A,), since

the symbol in [11, Lemma 3.6] is the one of P. So we will use P in the following. We get P =: —ug*"§,,8, — v*§, — w with
u=K, vH = gh(8,k?), w = g"(8,8,k%) — gV (8, k2 )k 2(8,k%).
Since g is constant, we have as before c = R = o* = B* = 0and 6# = V, = §, and this implies p* = 0 and

q = g"(8,8,k*) — g""(8,k*)k~2(8,k?) in the covariant form (2.1). We then use the result of Corollary 2.10 to get the
conformally perturbed scalar curvature:

Ry = 35718k 2(8,8uk7 k2 — 3¢/ k2(8, %k 2(8,k* k2], (5.9)

In Appendix B it is shown that we recover the result previously obtained in [11,14] for the irrational noncommutative
four torus.

6. Conclusion

In this paper, we have computed in all dimensions the local section R, of End(V) defined by a,(a, P) = fM trla(x)Ra(x)]
dvolg(x) for any section a of End(V) for any nonminimal Laplace type operator P = —[g""u(x)0,0, + v"(x)d, + w(x)]
(Theorems 2.3 and 2.4). Expressions have been given for R, in small dimensions, d = 2, 3, 4 (Corollary 2.8, 2.10, and 2.11)
and for any even dimension d > 2 (Corollary 2.9), where, as expected from the results in [1], polynomials expressions can
be proposed.

Despite the difficulties, a4(a, P) has been exhibited for d = 2 in[18] for the 2-dimensional noncommutative torus, leaving
open the computation of R4. We hope that our method could be used to reach R4 in any dimension, using a computer algebra
system in the more general framework of an arbitrary P, like (1.1).

Our method still applies to more general setting than the NCT at rational values of the deformation parameter, namely to
n-homogeneous C*-algebras, which can be characterized in terms of sections of fiber bundles with fiber space M,(C) [24,25].
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Appendix A. Geometrical identification of the noncommutative torus at rational values

For d = 2 and # := p/q rational, with p, q relatively prime integers with ¢ > 0, it is known (see [26, Prop. 12.2],
[27, Sect. 3]) that the algebra C (Té) of the NCT identifies with the algebra I"(Ay) of continuous sections of a fiber bundle Ay
in My(C) algebras over a 2-torus Tﬁ. Let us describe this identification.

Denote by 11‘2 the 2-torus given by identification of opposite sides of the square [0, 277]%. An element in TIZ, is written as
(e, e) for (x, y) € [0, 2 ]%. There is a natural action of the (abelian discrete) group G := Zz on ’]I‘2 (m,n) - (e*, e¥) :=
(efx+2mpm/a) (y+27wn/q))

The quotient 'JI‘B = 'JTIZ, /G is the 2-torus constructed by identification of opposite sides of the square [0, 27 /q]>. Indeed,
there are unique m € Z, and n € Zg such that e*+27Pm/0) — ¢{(x+27/a) gpd U +27P1/a) = iV +27/4) 50 that (m, 0) (resp. (0, n))
identifies (e, e¥) with ( ix+27/9) e'y) (resp. (€™, e) with (e®, elV+27/9)))in T2 /G. The quotient map T2 — T2 is a G-covering.

Let us now consider the C*-algebra C(?I‘,z,, My(C)) =~ C(T,%)@Mq((c) of matrix-valued continuous functions on Tﬁ, in which
the space of smooth functions C °°('J1‘,2,, M,(C)) is a dense subalgebra. In order to describe this algebra, let us consider the two
matrices

010 0 10 0 - 0
0 0 1 0 0 & 0 0

Uo:=|: S N Vo= : : with &, := 2™
000 - 1 0 -~ 0 & O
1 0 0 --- O o o .- 0 &q—1

which satisfy UgVo = €?"VoUp, Uy = Vg = 1,. For (r,s) € ZZ, the UVy's define a basis of My(C) such that tr[U§V;] =
q 8r.5),00,0) (here tr is the trace on My(C)). Thena € C°°(1I‘,2,, Mg(C)) can be decomposed as

ae e = Y as(@ UVs= Y D arersuf o) UgVs (A1)

(r.s)ez? (k,0)eZ2 (r.5)e72

where, with u(x) := e* and v(x) := eV, the last decomposition is the Fourier series of the smooth functions a; 5 on Tf,. In
particular, ai ¢ r s are rapidly decreasing coefficients in terms of (k, £) € 72.
The group G acts on My(C) by

(m,n)-A:=U,"V§AV, "U}.

Let us consider the subalgebra CG(T,%, My(C)) C C (T,z,, Mg(C)) of G-equivariant functions, which by definition satisfy, for any
(m,n) €G,

a(ei(x+2ﬂpm/q) ei(y+2ﬂpn/q)) — U(z)'lvo—m ( zx zy)VmU—

In the form of (A.1), the G-equivariant elements in C*°(T2, M,(C)) are such that their coefficients satisfy ay ¢ , s €27 (M1 =
Ay, e.r.s €27 ) for any (m, n) € G, (k. £) € Z* and (r,5) € Z2, 50 that @y s # 0 only when mk + n¢ = mr + ns mod q.
With (m, n) = (1, 0) and (0, 1) this implies k = r mod q and £ = s mod q. In (A.1), for a couple (k, £) € 72, there is a
unique (r,s) € Zé for which ay ¢ s # 0 (r and s are the remainders of the Euclidean divisions of k and ¢ by q). Then, the
only non zero coefficients ai ¢, s depend only on (k, £) € Z?. We denote them by ay ¢, and a smooth G-equivariant function
ace Cg°(’[F,2,, Mg(C)) is then given by the expansion

a= Z k¢ (UUO k UVO Z (%) U"V’“]

(k,0)ez? (k,0)ez?

with U := ulp, V = vV} satisfying UV = e>"VU. Then, the C*-algebra C(T%) for & = p/q identifies with C5(T%, Mq(C)),
the C*-completion of CZ°(T3, My(C)) in C(T3, Mq(C)).

The space CG(T,Z,, M,(C)) identifies in a canonical way with the space I"(Ag) of continuous sections of the associated fiber
bundle Ay = T xcMgy(C) to the G-covering T2 — ’E2 By definition, Ay is the quotient of T2 x My(C) by the equivalence
relation ((m, n)- (e"‘ e’y) A) ~ ((e*, eY), (m, n)-A) for any(m n) € G.We denote by [(e®, e¥), A] € Ay the class of ((e™, e¥), A).
We denote by S : CG(T,,, M,(C)) — I'(Ag) the identification, defined by S(a)(x, y) := [(e"‘, ev), a(e®, eV)].

In the GNS construction, Cgo(le,, Mg(C)) is dense in # and is contained in the domains of the §,,’s. The fiber of the vector
bundle V on which the differential operator P acts is then C¥ >~ M,(C),i.e. N = ¢*.In the present situation, all used elements
in I'(End(V)) are in fact left multiplications by elements in CG(TIZ,, Mgy(C)) = I'(Ap). For instance, the element a in (1.4) will

be understood as the left multiplication by an element a € CG(T,%, Mq4(C)).
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For A € My(C), let L(A) be the left multiplication by A on My(C). Then L(A) has the same spectrum as A, each eigenvalues
having q times its original multiplicity. In particular, we have that

tr[L(A)] = q tr[A]

where in the LHS tr is the trace of operators on My(C) and in the RHS tr is the trace on My(C).

The computation of R; uses local trivializations of sections of A. Given a section S(a) € I'(Ag) associated to a €
Cgc(’}l‘z, M,4(C)), we define the local section S(a)ic : (0, 27 /q)* — Mg(C) by S(a)ioc(x, y) == a(e™, e¥). Notice that the open
subset (0, 2 /q)? C ’Jl‘,z3 is sufficient to describe the continuous section S(a) via its trivialization S(a)joc. The (local) section R,
relative to ¢ in (1.4) is defined by

2 /q 27 /q
(L(S(@hoc)) = / L(S(@hoc(x )] dvolg(x, y) = [g]" f dx f dy q tr[S(@hoc(x, V)]
Tg 0 0

1/2

where we suppose here that |g| "/ is constant (this is the case for the situations considered in the paper). Then, one has

S(@hocX, )= Y are (u(x)Up)* (v(x)Vo)',

(k,0)ez2

hence

2m/q 2m/q
P(L(S(@)od)) = 1g1"*q Y asz dxe™™ / dy e tr[UgVg1.

(k,0)ez?

The trace tr[U; kVZ] is non-zero only when k, £ are multiples of g, and its value is then g, so that

2n/q g
HUS(@o) = 12 @Y aue [ dxes / dy e = |g|'2 (22 )2 aq,0 = (27 Plg | (a). (A2)
(k,0)ez?

1/2

Finally we get (when |g|'/ is constant)

poloS=(2n)g|V?*t (A.3)

when applied to any elements in C(Tﬁ) ).

Consider now a 4-dimensional noncommutative torus for ® = (910)‘ Gzox ) asin(5.4),and 6; = p;/q, pi, q; relatively prime
integers, and q; > 0.

Then C(T,) = C(T2 )® C(T?, ,) = I'(Ag) ® F(A@z) = I'(Ap, ® Ag,) where Ay, X Ay, is the external tensor product
of the two vector bundles Ay, over the base 2-torus T ; defined as above. Recall that, with pr; : T§ | x T, — T, the
natural projections, Ag, X Ag, = (priAs) ® (przAgz) where priAy is the pull-back of Ay, on T2, x Ts, " The fiber of
Ap, W Ag, is then Mg, (C) ® My, (C) =~ My,q,(C) and the isomorphism I'(Ag,) ® I'(Ag,) > I'(Ag, ® A(;Z) is induced by
(51 ®52)(X1, X2) == s51(X1) ®S2(Xz) forany s; € I'(Ag,) and x; € Tg‘i. Using the same line of arguments as for the 2-dimensional
case, and denoting by g; a constant metric on Téi, one gets, forany a; € C (T%_)i )

2 2
v o LS(@) @ 5(@)) = gl 1%l (@102 (2) (Z) tar @ a2), (A4)
so that
poLlo(S®S)=(2m)' gl |zl t. (A5)

This procedure can be extended straightforwardly to any even dimension.
Appendix B. Comparison with previous results for noncommutative tori

We would like to compare the result (5.8) with [8, Theorem 5.2]. Some transformations are in order, since some
conventions are different and the results are presented using different operators. In [8, Theorem 5.2], it is presented relative
to the normalized trace t on C(T?), while our result is presented relative to g o Lo S = (27 )? |g|'/? t with here |g|'/? = 7, .
If Rex denotes the operator of [8, Theorem 5.2], then

ax(a, P) = t(aR) = p(aR,) = (27)*z, ' t(aR,), Va € C(T%),

so we need to show that R, = (;?Z)ZRFK (strictly speaking, aR, should be replaced by L(S(a)R;) in ¢(aR,), see Appendix A).

Present results are given using functional calculus on the left and right multiplication operators L, and R, where u = k2.
The corresponding spectral decompositions give L,(a) = Zro ro Er,a and Ry(a) = Zrl r1 akE;, where E,, is the projection
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associated to u for the spectral value r;. In [8], another convention is used, namely via functional calculus on the modular
operator A(a) := k~2ak?. If E; A denotes the projection of A associated to the spectral value y, then

A(a) = Ly—1 0 Ry( Zro r1 EryaE,, = ZyEro o = ZyEyA(a)

o\ ro.y y

wherey = ro’ 1 belongs to the spectrum of A.

Thus Ef(a) = 3, EryEyr, and is easy to check that ERER = 8y, E

The next three lemmas are technical results which permlt to transtoorm our relation (5.8) into a relation that will be
compared to [8, Theorem 5.2].

Forany by ® --- ® b, € MN((C)®”1, we denote by A; the operator A which acts on b;, by L}'< the left multiplication by k
acting on b;, and by RL the right multiplication by u on b;. Notice that all these operators commute.

The first lemma transforms the functional calculus in the R!’s into a functional calculus in the A;s.

Lemma B.1 (Substitution Lemma). For any function F(ro, 11, ..., 1) of the eigenvalues r; of the R{, 'sand any by ® - - - ® by, one
has

Y F(ro.ri . 1) boErgbiEry - bpEr, = Y f(ro,y1, .. ¥p) boEro B (br) -+ - ES (by)
10sF 15T 1015 Yp
where f(ro, y1, ..., ¥p) = F(ro, roy1, roy1y2, - - ., Toy1 - - - ¥p) is a spectral function of R% and the Ays.
Using functional calculus notation, this lemma implies
moF(RLRL, ....RE)=mof(R), Ay, ..., A,

as operators acting on elements by ® - - - ® by. This result is very analog to the rearrangement lemma [28, Corollary 3.9]
without the integral fooo duin [28, eq. (3.9)].

Proof. It is sufficient to show how the combinatorial aspect of the proof works for p = 2. One has

D Fro, y1, y2) boEr B (b)ES (b2) = Y F(ro, Toy1, Toy1y) boEry Efy (b1)ES (b)
T0.¥1,¥2 T0,Y1.Y2

Z F(ro, roy1, To¥1Y2) boEr Ez, b1Ey, 2, Ez, boE,y, 2,

r0-¥1-Y2
21,29

Z F(ro, oY1, Toy1Y2) bOEr0b1Ey1roEzz bZEyzzz

10:Y1-Y2
2

= Z F(ro, 11, 11y2) boEry b1Er  Ez, b2 Ey, 2,

T0-71:Y2
22

= Z F(ro, 11, 11y2) boEryb1Er  baEy,
T0:11.Y2
> F(ro.r1.72) boErbiEr, boE,,. @
ro,T1,12

Let k = e"/2. While the arguments b; mentioned above are 8,k or Ak, they are §,(Ink) = 18, hand A(Ink) = 3 Ahin|[7].
The second lemma gives the relations between these arguments, compare with [8, Lemma 5.1].

_ zf(f Diny1—(/y1=1)Iny;  then

Lemma B.2. If gl(y) = S anng(yhyZ) Iny; Iny, (Iny;+Iny2)

Iny
(Su.k = kgl(A)[(Sp.h] = 2kg1(A)[5/1. In k]v
Ak = kgi(A)Ah] — g""km o g2(Aq, A2)[(8,.h) ® (8,h)]
= 2kgi(A)Alnk] — 4g" km o g2(Aq, A2)[(8, Ink) ® (8, Ink)].

Proof. With g1(y) := 3 f ds; y°1/2 = (/y — 1In" 'y, we get

1
S8,k = 8,e"? = fo dsy e =S2 (8 h/2)esth/? = %k(/o ds; A%/2)[8,,h]
A2 _ A1/2 -1
= ki] X [8,.h] = 7lnA [6,.Ink] = kgi(A)[S,.h] = 2kg1(A)[S, Ink].
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Similarly for the Laplacian,
1
Ak = —g"(8,8,k) = —1g""8,.[ f ds1e1SM2(§, h)es1/2)
0
1
= —1g" [/ dsy e IM2(5,8,h)e1/? ]
0
1 1-s9
_ %g/w [/ dS] / d52 e(1751752)h/Z(SMh)eszh/Z(auh)es1h/2]
0 0

1 S1
_ %g/w [/ ds; / ds, 6(1_51)h/z(évh)e(sl_SZ)h/Z(SMh)eszh/z]
0 0

1
— gk f dsy A*12](8,,8,h)
0
1 1-s1
— 1g"™kmo | / ds f dsy ATV AS21[(5,h) @ (8,h)]

kao[/ d51/ dsy A5 A2 [(8,.h) @ (8,h)]
= kgi1(A)Ah] — g""km o g&(A1, A3)[(8,.h) ® (8,h)]

with

1-s1
L. Y2) }1[ dS]/ ds, ST 2 / ds1/ ds, v} 2 y2/?
0

zﬁ(«/}Tz— Niny; = (/y1 — Diny,
Iny;Iny;(Iny; + Iny;) .

The third lemma gives (technical) functional relations which allow a change of arguments inside our operators. Denote
by mi;[bg ® b1 ® by] := by ® b1b, the partial multiplication.

Lemma B.3. For any operators llkefl( ,Ay), fz(Ru, A1, Ay), g1(A1), and g(A1, Ay), one has

mofi(R), Ay) oL} ogi(Ar) =moRyofi(R), A1) ogi(Ay),
mofi(R), Ay)omyp oL} 0 g&(Aq, Ay) =moRY o fi(R), A1Az) 0 g2(A1, Ay),
2
mo (R}, A1, A)o L ol 0g(A1, Ay) =moR)o Al/ 0 LR, A1, &) 0 g2(A1, A).

Thus the operators on the LHS are respectively associated, modulo the multiplication operator m, to operators defined by the
spectral functions

Vofi(ro, y1)g81(31), VTofi(ro, y1y2)82(v1, ¥2), ro/Y1fa(ro, ¥1, ¥2)82(01, ¥2),

where y1, y, belong to the spectrum of A and ry to the spectrum of u.

Proof. For the first relation, we compute the LHS on by ® b; using spectral decomposition:

mo fi(RY, Aq) oLy ogi(Aq)[bo ® bi] = Z f1(r07Y)\/ﬁg1(Y1)boErOEf[ErlEﬁ(bl)]

0.1
¥y

= Z fa(ro, J’)\/agl()ﬁ ) bOErgEzEr1 Ez1 blEy1z1 Eyz

9.1
Y.yt
z.71

the projections products imply ro = z = r; = z; and y1z; = yz, so this is equal to

Zf] To,y ﬁg] bOEroEzb Eyz Z«/%fl o,y gl bOErg 'y (b )

0.Y: DA
z z

=moR)ofi(R% A1) ogi(A)bo ® bil.
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For the second relation, we compute the LHS on by ® b1 ® b,:
mo fi(R, Aq)omyy oL} 0 g(Aq, Ay)by ® by ® by]
= Y filro, YVN1g82(1, ¥2) boEr EL [Er EL (b1)ES (b2)]

0.7,

VY192
= Z fi(ro, Y)\/ﬁgZ (Y1,¥2) bOEroEzEr1 E,, blEy121 E, bZEyzzzEyz
yhdy.
2.21.7)

which implies ro = z = r; = z1,¥121 = 23, and y,z; = yz, and

= Z f(rOa.Vl.)’Z)\/%gZ(.VIa.VZ)bOEr0E21blEylzlEzzszyzzz

royilyzz
= > JViaf(ro, y1y2)%01, ¥2) boEro E (b1)ES ()
To.Y1.¥2

=mo Ry o f(R, A14;) 0 &2(A1, Az)[bo ® by @ by].
For the third relation, we compute the LHS on by ® b1 ® b:
mo f(R), A1, Az) oLy oL} 0g(Aq, Az)[bo ® by ® by]
= > L0y Y2V v9) boFr By En Ef (b1)IEs [Er B (b))

raky
10.r1.12+
V1925 Y5
/ /
= E Foro, y1, y2)3/11+/ TZgZ(Y1,yZ)bOErOEz1 Er1 Ez;blEy’lz;Eylm EzzErzEzébZEy’zzéEyzzz
10.71:12+

Y1Y2:¥]Y5:
21.23.2}.2)

which implies ro = z; = 11 = 21, Y2} =121 = 22 = 1, = 7, and y,Z}, = ¥,2,, so that:

= Z fZ(TOs Y1, m)%vhrogz(}ﬁ s J/2) bOErOEz1 b1Ey1z1 EzzbZEyZZZ

10.21,22,

Y1.Y2
= Y royifaro. y1. y2)801. ¥2) boEr, ES (b1)Ef (b)
10.Y1.Y2

=moR o A:/Z 0 o(RS, A1, Az) 0 g@2(A1, Ay)[bo ® b1 @ by]. W
We can now change (5.8) in order to compare with [8, Theorem 5.2]. As in Lemma B.1, let

fak(ro, y1) = Far(ro, roy1), f({i;k(roJ/l,J’z) = Fétquk(ro, roy1, Toy1y2)-

Using Lemmas B.2 and B.3, one gets

m o F(R%, R [a ® Akl = mo far(R%, Ay)[a ® Ak]
= mo fa(R), A1) oLy 0 gi(Ar)[a® Ah]
—g"'m o fu(R), A1) oLy omyy 0 gy(A1, Az)[a® (8,h) ® (8,h)]
mo R o far(R), A1) o gi(Aq)[a® Ah]
—g"'moR) o fa(R), A1) 0 g2(A1, Ay)[a® (8,h) ® (8,h)]
= 2moR) o far(R%, A1) o g1(A1)[a® Alnk]
—4g""mo R o fak(R), A1A2) 0 &(A1, A2)[a® (8, Ink) ® (8, Ink)]

and

mo Fi (RO, RY R2) [a ® (8,k) ® (8,k)] = mo fi5 (R, Ay, Az)[a® (8,k) ® (8,k)]
=mofl, (R0, A, Ax)oL; oL} ogi(Ar)ogi(Az)[a® (8,h)® (8,h)]
=moR)oa)?ofih (RS, A1, Az)0gi(A1) 0 gi1(A2)[a® (8,:h) @ (5,h)]

=4moR o A o fl (RS, A1, Ay) o g1(A1) 0 g1(A2)[a ® (8, Ink) ® (8, Ink)].
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So, the sum gives

m o Fo(R), R) [a ® Akl +mo Fyp (RS, RY, R2) [a ® (8,k) ® (8,k)]

=mo G(Alnk)(Ru, A[a® Alnk] +mo Gé‘avlnk)(alnk)(Rg, A, A)[a® (8, Ink)® (8, Ink)]
with

Giamk(R), A1) = 2R o far(R), A1) o g1(A1),
Gt mi(R: A1, Ag) == 4R} o AV ofln (RO, Ar, Az) o gi(A1) 0 gi(Az)
— 4g"RY o fAr(R), A1A2) 0 (A1, Ay).

The associated spectral functions are

Giamk(ro, Y1) = 23/Taf ak(ro, y1)81(¥1),
Glomiyank(T0, Y1, ¥2) = 410/Vif i (ro, 1, ¥2)81(01)81(v2) — 48" v/Taf arl(To, Y1¥2)82(1, ¥2)-

Another change of convention concerns the derivations of C °°(’]I‘%,)): in [8],@ := —i8, is used. This implies that their
expressions like (’8\,4 In If\)(/a\,, In k) correspond to our —(8,, Ink) ® (8, In k). Notice also their combination?1 Ink+ |t IZB‘} Ink+
21112818, Ink = ghv§,8, Ink = —g#"§,8, Ink = Alnk. Thus for a comparison of the two results, a — sign has to be taken
into account for the Gy, 11y term. Finally, [8, Theorem 5.2] is written in terms of functions of In A, thus it remains to
make the final change of variables y; = " in G a k), andy; = € and y, = e in Gfg”lnk)(aln K-

In [8, Theorem 5.2], Rk = —% x [expression in R1,R,,W] while in (5.8), one has written R, = é x [expression in F 4y,
Fjai]- The proof that R, = %RFK is then equivalent to check that [expression in R1,R,, W] = —[expression in Fag, Fjy,, 1.
The previous technical resufts imply that this is equivalent to show that

Ri(x) = —Geam(ro, €),

)=
Ra(s. t) = G(alnk)(alnk (ro, €°, €),
[T|*Ry(s. ) = (E)lnk)(alnk ("o, .eh),
TRy (s, t) — i, W(s, t) = G(E,mk)(dm,< (ro, €, €
(

T1Ry(s, t) + i W(s, t) = G(alnk)(alnk ro, €, €

) ’

)
)
)
0.
All these relations can be checked directly. In particular, the relations on the RHS are independent of the variable rg.

In order to compare (5.9) for the noncommutative four torus with [11, Theorem 5.4], we can use the results in [ 14]. As
before, we need the correspondence (A.5) between our trace ¢ and their trace ¢y = t. Here g/"" = 8" on the base tori Tﬁ S

that |g;|"/> = 1. Denote by Ry the curvature obtained in [11, Theorem 5.4], which is 2 times [11, eq. (5.1)]. A comparison
between eq. (1) and (3)in[14] and [11, eq. (5.1)] gives

po(aRe) = oo (a / bz(g)m) = ’;igao (al—8""k72(8,,8,k* k2 + 28" k2(5,, k2 k~2(8,k*)k2])

= B0 (al8" k(8,8 Kk 2 = 38" k(8,0 (8,Kk2]) = ¢ (@R2)

and the two results coincide.’
Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.geomphys.2018.02.014.
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