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a b s t r a c t

Let P be a Laplace type operator acting on a smooth hermitean vector bundle V of fiber
CN over a compact Riemannian manifold given locally by P = −[gµνu(x)∂µ∂ν + vν (x)∂ν +

w(x)] where u, vν , w are MN (C)-valued functions with u(x) positive and invertible. For
any a ∈ Γ (End(V )), we consider the asymptotics Tr(a e−tP ) ∼

t↓0+

∑
∞

r=0ar (a, P) t
(r−d)/2

where the coefficients ar (a, P) can be written as an integral of the functions ar (a, P)(x) =

tr[a(x)Rr (x)].
The computation ofR2 is performed opening the opportunity to calculate the modular

scalar curvature for noncommutative tori.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As in [1], we consider a d-dimensional compact Riemannian manifold (M, g) without boundary, together with a
nonminimal Laplace type operator P on a smooth hermitean vector bundle V overM of fiber CN written locally as

P := −[ gµνu(x)∂µ∂ν + vν(x)∂ν + w(x) ]. (1.1)

Here u(x) ∈ MN (C) is a positive and invertible matrix valued function and vν, w are MN (C) matrices valued functions. The
operator is expressed in a local trivialization of V over an open subset ofM which is also a chart onM with coordinates (xµ).
This trivialization is such that the adjoint for the hermitean metric corresponds to the adjoint of matrices and the trace on
endomorphisms on V becomes the usual trace tr on matrices.

For any a ∈ Γ (End(V )), we consider the asymptotics of the heat-trace

Tr(a e−tP ) ∼
t↓0+

∞∑
r=0

ar (a, P) t (r−d)/2 (1.2)
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where Tr is the operator trace. Each coefficient ar (a, P) can be written as

ar (a, P) =

∫
M
ar (a, P)(x) dvolg (x) (1.3)

where dvolg (x) := |g|
1/2dxwith |g| := det(gµν). The functions ar (a, P)(x) can be evaluated (various techniques exist for that)

and give expressions of the form

ar (a, P)(x) = tr[a(x)Rr (x)],

where tr is the trace on matrices and Rr is a (local) section of End(V ). The local section Rr of End(V ) is uniquely defined by

ar (a, P) = ϕ(aRr ), (1.4)

where

ϕ(a) :=

∫
M
tr[a(x)] dvolg (x) (1.5)

is the natural combined trace on the algebra of sections of End(V ) associated to (M, g) (the integral) and V (thematrix trace).
The choice of this trace is not unique, and changing ϕ changes Rr . For instance, since M is compact, one can normalize the
integral so that the total volume ofM is 1, and also thematrix trace such that the trace of the identitymatrix is 1. In that case,
denoted by 1 the identity operator in Γ (End(V )), the new combined trace ϕ0 satisfies ϕ0(1) = 1. In Section 5 ϕ0 plays an
important role since it corresponds to the unique normalized trace on the noncommutative torus algebra. Another possibility
for the choice of ϕ is to use a Riemannian metric onM which is not the tensor g in P , see Remark 2.6.

The aim of this paper is to present a way to compute Rr by adapting the techniques developed in [1]. These techniques
were strongly motivated by a need in physics for explicit computations of ar (1, P), see for instance [2,3] and the reference
in [1] for the existing results on the mathematical side. The idea behind the computation of R2 is to extract the real matrix
content of the coefficient a2 which is related to the scalar curvature of the manifoldM .

In Section 2, two formulas are provided for R2(x), both in local coordinates (Theorem 2.3) and in a covariant way
(Theorem2.4) in arbitrary dimension anddetailed in lowdimensions. In Section 3, somedirect applications are also provided,
for instance to a conformal like transformed Laplacian. Section 4 is devoted to the details of the computations (see also the
ancillary Mathematica [4] notebook file [5]).

In Section 5, another application is given in noncommutative geometry. Namely, we compute the conformally perturbed
scalar curvature of rational noncommutative tori (NCT). Since at rational values θ = p/q of the deformation parameter, the
algebras of the NCT are isomorphic to the continuous sections of a bundle over the ordinary tori with fiber in Mq(C), they
fit perfectly with our previous framework. The irrational case has been widely studied in [6–18]. The results presented
in these papers can be written without explicit reference to the parameter θ . In the rational case, our results confirm
this property. Moreover, our method gives an alternative which avoids the theory of pseudodifferential calculus on the
noncommutative tori introduced by Connes [19] and detailed in [6,20]. In Appendix B, in order to compare to the results
in [8, Theorem 5.2] and [11, Theorem 5.4], we perform the change of variables from u to ln(u) and the change of operators
from the left multiplication by u to the conjugation by u, formalized as a substitution lemma (Lemma B.1).

2. The method and the results

In [1], the computation was done for the special case a = 1, for which a lot of simplifications can be used under the trace.
We now show that the method described there can be adapted almost without any change to compute the quantities Rr .
Moreover, we present the method in a way that reduces the number of steps in the computations, using from the beginning
covariant derivatives on the vector bundle V .

2.1. Notations and preliminary results

In order to start with the covariant form of P (see [1, Section A.4]), let us introduce the following notations. We consider
a covariant derivative ∇µ := ∂µ + η(Aµ), where η is the representation of the Lie algebra of the gauge group of V on any
associated vector bundles (mainly V and End(V ) in the following). Let

αµ := gρσ (∂µgρσ ), αµ
:= gµναν = gµνgρσ (∂νgρσ ), βµ := gµσ (∂ρgρσ ), βµ

:= gµνβν = ∂νgµν .

The covariant form of P associated to ∇ (see [1, eq. (A.11)]) is given by

P = −(|g|
−1/2

∇µ|g|
1/2gµνu∇ν + pµ

∇µ + q)

= −gµνu∇µ∇ν −
(
pν

+ gµν(∇µu) − [
1
2α

ν
− βν

]u
)
∇ν − q, (2.1)

where the last equality is obtained using gµν 1
2∂µ ln|g| + ∂µgµν

= −
[ 1
2α

ν
− βν

]
. Here, u is as before, and pµ, q are as

vµ, w from (1.1), except that they transform homogeneously in a change of trivialization of V . All these (local) functions are
MN (C)-valued (as local sections of End(V )), so that η is the adjoint representation:

∇µu = ∂µu + [Aµ, u], ∇µpν
= ∂µu + [Aµ, pν

], ∇µq = ∂µu + [Aµ, q].
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Let us introduce the total covariant derivative ∇̂µ, which combines ∇µ with the Levi-Civita covariant derivative induced
by the metric g . It satisfies

∇̂µaν
= ∇µaν

+ Γ ν
µρa

ρ
= ∂µaν

+ [Aµ, aν
] + Γ ν

µρa
ρ, ∇̂µgαβ

= 0,

∇̂µbν = ∇µbν − Γ ρ
µνbρ = ∂µbν + [Aµ, bν] − Γ ρ

µνbρ, ∇̂µgαβ = 0,

for any End(V )-valued tensors aν and bν , where Γ ν
µρ are the Christoffel symbols of g . Let us store the following relations:

∇̂µu = ∇µu, (2.2)

gµν
∇̂µ∇̂νu = gµν(∇µ∇νu − Γ ρ

µν∇ρu) = gµν
∇µ∇νu − [

1
2α

µ
− βµ

]∇µu, (2.3)

∇̂µpµ
= ∇µpµ

−
1
2gαβ (∂µgαβ )pµ

= ∇µpµ
−

1
2αµpµ.

Using 1
2α

ρ
− βρ

= gµνΓ ρ
µν , one then has

P = −(gµν
∇̂µu∇̂ν + pν

∇̂ν + q) = −gµνu∇̂µ∇̂ν − [pν
+ gµν(∇̂µu)]∇̂ν − q. (2.4)

Notice that in these expressions the total covariant derivative ∇̂ν (which is the first to act) will never apply to a tensor valued
section of V , so that it could be reduced to the covariant derivative ∇ν .

The writing of P in terms of a covariant derivative ∇ is of course not unique:

Proposition 2.1. Let ∇
′
µ = ∇µ + η(φµ) be another covariant derivative on V . Then

P = −(gµν
∇̂

′

µu∇̂
′

ν + p′ν
∇̂

′

ν + q′), (2.5)

with

p′ν
= pν

− gµν(uφµ + φµu), q′
= q − gµν(∇̂µuφν) + gµνuφµφν − pµφµ. (2.6)

In this proposition, φµ is as pµ: it transforms homogeneously in a change of trivializations of V .

Proof. This is a direct computation using relations like ∇̂
′
µu = ∇̂µu + [φµ, u] and ∇̂

′
µφν = ∇̂µφν + [φµ, φν] in (2.5) and

comparing with (2.4). ■

Corollary 2.2. There is a unique covariant derivative ∇ such that pµ
= 0. This implies that we can always write P in the reduced

form

P = −(gµν
∇̂µu∇̂ν + q). (2.7)

Proof. The first part of (2.6) can be solved in φµ for the condition p′ν
= 0. Indeed, using results in [21], the positivity and

invertibility of u implies that for any ν, the equation u(gµνφµ) + (gµνφµ)u = pν has a unique solution given by

gµνφµ =
1
2

∫
+∞

−∞

uit−1/2 pν u−it−1/2

cosh(π t)
dt.

So, given any covariant derivative to which pν is associated as in (2.1), we can shift this covariant derivative with the above
solution φµ to impose p′ν

= 0. ■

This result extends the one in [22, Section 1.2.1], which is a key ingredient of the method used there. In the following, we
could have started with P written as in (2.7). But, on one hand, we will see that this is not necessary to get Rr in terms on
u, pµ, q (at least for r = 2). On the other hand, we will see in Section 5 that the covariant derivative which is naturally given
by the geometric framework of the rational noncommutative torus does not imply pµ

= 0, and we will then apply directly
the most general result. Obviously, it could be possible to first establish our result for the reduced expression (2.7) and then
to go to the general result using Proposition 2.1. But this would complicate unnecessarily the presentation of the method
and our results.

2.2. The method

Themethoddescribed in [1] startswith P written as P = −gµνu∂µ∂ν−vµ∂µ−w and leads to−P(eixξ f ) = −eixξ
[
H+K+P

]
f

where H = gµνuξµξν and K = −iξµ

(
vµ

+ 2gµνu∂ν

)
.

This can be generalized for a covariant writing of P . Using (2.1), one gets

− P(eixξ f ) = eixξ
[
− gµνuξµξν + iξµ

(
pµ

+ gµν(∇νu) − [
1
2α

ν
− βν

]u + 2gµνu∇ν

)
+ gµνu∇µ∇ν +

(
pν

+ gµν(∇µu) − [
1
2α

ν
− βν

]u
)
∇ν + q

]
f

= −eixξ [H + K + P]f , (2.8)
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with

H := gµνuξµξν, K := −iξµ

(
pµ

+ gµν(∇νu) − [
1
2α

µ
− βµ

]u + 2gµνu∇ν

)
. (2.9)

These relations look like the expressions of H and K given above (see [1, eq. (1.6), (1.7)]) with the replacements

∂µ ↦→ ∇µ, vµ
↦→ pµ

+ gµν(∇νu) − [
1
2α

µ
− βµ

]u, w ↦→ q. (2.10)

As in [1], we have Tr[ae−tP
] =

∫
dx tr[a(x)K (t, x, x)] with

K (t, x, x) =
1

(2π )d

∫
dξ e−ix.ξ (e−tP eix.ξ ) =

1
(2π )d

∫
dξ e−t(H+K+P) 1 =

1
td/2

1
(2π )d

∫
dξ e−H−

√
tK−tP 1.

Here 1 is the constant 1-valued function. Notice that K (t, x, x) is a density, and that |g|
−1/2K (t, x, x) is a true function on

M . Using the Lebesgue measure dx instead of dvolg (x) is convenient to establish the previous relation which uses Fourier
transforms (this point has not been emphasized in [1]).

The asymptotics expansion is obtained by the Volterra series

eA+B
= eA +

∞∑
k=1

∫
∆k

ds e(1−s1)A B e(s1−s2)A · · · e(sk−1−sk)A B eskA

where

∆k := {s = (s1, . . . , sk) ∈ Rk
+

| 0 ≤ sk ≤ sk−1 ≤ · · · ≤ s2 ≤ s1 ≤ 1} and ∆0 := ∅ by convention.

For A = −H and B = −
√
tK − tP , one gets

e−H−
√
tK−tP1 = e−H

+

∞∑
k=1

(−1)kfk[(
√
tK + tP) ⊗ · · · ⊗ (

√
tK + tP)] (2.11)

with

fk(ξ )[B1 ⊗ · · · ⊗ Bk] :=

∫
∆k

ds e(s1−1)H(ξ ) B1 e(s2−s1)H(ξ ) B2 · · · Bk e−skH(ξ ), (2.12)

f0(ξ )[z] := z e−H(ξ ),

where Bi are matrix-valued differential operators in ∇µ depending on x and (linearly in) ξ , and z ∈ C. Collecting the powers
of t1/2, one gets

Tr (a e−tP ) ≃
t↓0

t−d/2
∞∑
r=0

ar (a, P) t r/2.

Each ar (a, P) contains an integration along ξ , which kills all the terms in odd power in
√
t since K is linear in ξ while H is

quadratic in ξ : a2n+1(a, P) = 0 for any n ∈ N. For instance, the first two non-zero local coefficients are1

a0(a, P)(x) =
|g|

−1/2

(2π )d
tr[a(x)

∫
dξ e−H(x,ξ )

],

a2(a, P)(x) =
|g|

−1/2

(2π )d
tr [a(x)

∫
dξ

∫
∆2

ds e(s1−1)H K e(s2−s1)H K e−s2H ]

−
1

(2π )d
tr [a(x)

∫
dξ

∫
∆1

ds e(s1−1)H P e−s1H ]

(remark the coefficient |g|
−1/2 added here to be compatible with (1.3)).

The strategy to compute these coefficient is twofold. First, we get rid of the∇µ’s in the arguments Bi. This is done using [1,
Lemma 2.1], which can be applied here since ∇µ is a derivation: by iteration of the relation

fk(ξ )[B1 ⊗ · · · ⊗ Bi∇µ ⊗ · · · ⊗ Bk] =

k∑
j=i+1

fk(ξ )[B1 ⊗ · · · ⊗ (∇µBj) ⊗ · · · ⊗ Bk]

−

k∑
j=i

fk+1(ξ )[B1 ⊗ · · · ⊗ Bj ⊗ (∇µH) ⊗ Bj+1 ⊗ · · · ⊗ Bk], (2.13)

1 Notice the change with convention in [1]: a2r here corresponds to ar in [1].
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we transform each original term into a sum of operators acting on arguments of the form B1 ⊗ · · · ⊗ Bk = Bµ1...µℓ

k ξµ1 · · · ξµℓ

(for different values of k) where now all the Bi are matrix-valued functions (of x and ξ ), or, equivalently, the Bµ1...µℓ

k are
MN (C)⊗

k
-valued functions (of x only).

The second step of the strategy is to compute the operators applied to the arguments Bµ1...µℓ

k . They all look like

1
(2π )d

∫
dξ ξµ1 · · · ξµℓ

fk(ξ )[B
µ1...µℓ

k ] ∈ MN (C),

where the fk(ξ ) are definedby (2.12) anddependonly onu throughH . As shown in [1], these operators are related to operators
Tk,p(x) : MN (C)⊗

k+1
→ MN (C)⊗

k+1
defined by

Tk,p(x) :=
1

(2π )d

∫
∆k

ds
∫

dξ ξµ1 · · · ξµ2p e
−∥ξ∥

2 Ck(s,u(x)), (2.14)

T0,0(x) :=
1

(2π )d

∫
dξ e−∥ξ∥

2u(x)
∈ MN (C),

where ∥ξ∥
2

:= gµνξµξν and the Ck(s, A) : MN (C)⊗
k+1

→ MN (C)⊗
k+1

are the operators

Ck(s, A)[B0 ⊗ B1 ⊗ · · · ⊗ Bk] = (1 − s1) B0A ⊗ B1 ⊗ · · · ⊗ Bk + (s1 − s2) B0 ⊗ B1A ⊗ · · · ⊗ Bk

+ · · · + sk B0 ⊗ B1 ⊗ · · · ⊗ BkA.

Denote bym : MN (C)⊗
k+1

→ MN (C), B0 ⊗ B1 ⊗ · · · ⊗ Bk ↦→ B0B1 · · · Bk the matrix multiplication, then

1
(2π )d

B0

∫
dξ ξµ1 · · · ξµℓ

fk(ξ )[B1 ⊗ · · · ⊗ Bk] = m ◦ Tk,p(x)[B0 ⊗ B1 ⊗ · · · ⊗ Bk],

so that each function ar (a, P)(x) is expressed formally as a sum

ar (a, P)(x) = |g|
−1/2

∑
tr

[
m ◦ Tk,p(x)[a(x) ⊗ B1(x) ⊗ · · · ⊗ Bk(x)]

]
. (2.15)

This sum comes form the collection of the original terms in K and P producing the power t r/2 and the application of
[1, Lemma 2.1] i.e. (2.13). This sum relates the r on the LHS to the possible couples (k, p) on the RHS. The Bi arematrix-valued
functions (of x) expressed in terms of the original constituents of H , K , and P and their covariant derivatives.

Let us mention here how the procedure introduced in [1] is adapted to the situation where we have the left factor a(x):
in [1], the relation between the Tk,p(x) and the fk(ξ ) used a trickwhich consist to add a B0 = 1 argument in front of B1⊗· · ·⊗Bk
(the purpose of the κ map defined in [1]). Here, 1 is simply replaced by a(x). But, since

m ◦ Tk,p(x)[B0 ⊗ B1(x) ⊗ · · · ⊗ Bk(x)] = B0 m ◦ Tk,p(x)[1⊗ B1(x) ⊗ · · · ⊗ Bk(x)],

it is now easy to propose an expression for the factor Rr as a sum

Rr = |g|
−1/2

∑
m ◦ Tk,p(x)[1⊗ B1(x) ⊗ · · · ⊗ Bk(x)]. (2.16)

One of the main results of [1] is to express the operators Tk,p in terms of universal functions through a functional calculus
relation involving the spectrum of u (these relations take place at any fixed value of x ∈ M , that we omit from now on). For
ri > 0, α ∈ R, and k ∈ N, let

Iα,k(r0, r1, . . . , rk) :=

∫
∆k

ds [(1 − s1)r0 + (s1 − s2)r1 + · · · + skrk]−α

=

∫
∆k

ds [r0 + s1(r1 − r0) + · · · + sk(rk − rk−1)]−α,

so that

Iα,k(r0, . . . , r0) =
1
k! r

−α
0 .

In these functions, the arguments ri > 0 are in the spectrum of the positive matrix u.
Denote by Ri(A) : MN (C)⊗

k+1
→ MN (C)⊗

k+1
the right multiplication on the ith factor

Ri(A)[B0 ⊗ B1 ⊗ · · · ⊗ Bk] := B0 ⊗ B1 ⊗ · · · ⊗ BiA ⊗ · · · ⊗ Bk,

then

Tk,p = gd G(g)µ1...µ2p Id/2+p,k
(
R0(u), R1(u), . . . , Rk(u)

)
,
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with

gd :=
1

(2π )d

∫
Rd

dξ e−|ξ |
2
g(x) =

|g|
1/2

2d πd/2 , (2.17)

G(g)µ1...µ2p :=
1

(2π )d gd

∫
dξ ξµ1 · · · ξµ2p e

−gαβ ξαξβ

=
1

22p p!
(
∑
ρ∈S2p

gµρ(1)µρ(2) · · · gµρ(2p−1)µρ(2p) ) =
(2p)!
22p p!

g(µ1µ2···gµ2p−1µ2p )
,

where S2p is the symmetric group of permutations on 2p elements and the parenthesis in the index of g is the complete
symmetrization over all indices. Notice that the factor |g|

1/2 in gd simplifies with the factor |g|
−1/2 in (2.16).

The universal functions Iα,k have been studied in [1, Section 3]. They satisfy a recursive formula valid for 1 ̸= α ∈ R and
k ∈ N∗:

Iα,k(r0, . . . , rk) =
1

(α−1) (rk−1 − rk)−1
[Iα−1,k−1(r0, . . . , rk−2, rk) − Iα−1,k−1(r0, . . . , rk−1)]. (2.18)

It is possible to give some expressions for the Iα,k for any (α, k). They depend on the parity of d. For d even, the main results
are that In,k are Laurent polynomials for N ∋ n = (d − r)/2 + k ≥ k + 1 (d ≥ r + 2) and k ∈ N∗, while they exhibit a more
complicated expression in terms of ln functions for N ∋ n = (d − r)/2 + k ≤ k (d ≤ r). For d odd, the In,k can be expressed
in terms of square roots of the ri, but without an a priori general expression.

The recursive formula (2.18) can be used to write any Iα,k appearing in the computation of the operators Tk,p in terms of
Iα−k+1,1. The case α = 1 appears in dimension d = 2: the fundamental spectral function is I1,1, and a direct computation
shows that

I1,1(r0, r1) =
ln r0 − ln r1

r0 − r1
.

Using x
ex−1 =

∑
∞

n=0
Bn
n! x

n, where Bn are the Bernoulli numbers, one gets, with x = ln r0 − ln r1,

r1 I1,1(r0, r1) =

∞∑
n=0

Bn
n! [ln r0 − ln r1]n.

A relation between the Bernoulli numbers and a2(a, P) has already been noticed in the computation of themodular curvature
for the noncommutative two torus in [7] (see Section 5).

2.3. The results for a2(a, P)

In the following, we restrict ourselves to the computation of a2(a, P). This section gives the main results of the paper. The
computations are detailed in Section 4.

Let us introduce the following notation. For any x ∈ M , denote by ri = ri(x) > 0 an element in the (discrete) spectrum
sp(u) of u = u(x) and by Eri = Eri (x) the associated projection of u. This implies that

u =

∑
r0∈sp(u)

r0Er0 = r0Er0

where in the last expression we omit the summation over r0, as will be the case in many expressions given in the following.
Notice that 1 =

∑
r0∈sp(u)Er0 and Er0Er1 = δr0,r1Er0 .

Theorem 2.3. For P given by (1.1), a2(a, P)(x) = tr[a(x)R2(x)] with

R2 =
1

2d πd/2

[
c r−d/2+1

0 Er0 + Fµ

∂u(r0, r1) Er0 (∂µu)Er1
+ gµνF∂∂u(r0, r1) Er0 (∂µ∂νu)Er1 + gµνF∂u,∂u(r0, r1, r2) Er0 (∂µu)Er1 (∂νu)Er2
+ Fw(r0, r1) Er0wEr1 + Fv,µ(r0, r1) Er0v

µEr1
+ Fv,∂u(r0, r1, r2) Er0v

µEr1 (∂µu)Er2 + F∂u,v(r0, r1, r2) Er0 (∂µu)Er1v
µEr2

+ gµνFv,v(r0, r1, r2) Er0v
µEr1v

νEr2 + F∂v(r0, r1) Er0 (∂µvµ)Er1
]
,

(2.19)

where the sums over the r0, r1, r2 in the spectrum of u are omitted, the spectral functions F are given below, and

c :=
1
3 (∂µ∂νgµν) −

1
12g

µνgρσ (∂µ∂νgρσ ) +
1
48g

µνgρσ gαβ (∂µgρσ )(∂νgαβ )

+
1
24g

µνgρσ gαβ (∂µgρα)(∂νgσβ ) −
1
12gρσ (∂µgµν)(∂νgρσ )

+
1
12gρσ (∂µgνρ)(∂νgµσ ) −

1
4gρσ (∂µgµρ)(∂νgνσ ).
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The coefficient c is given here in an arbitrary coordinate system. Since (2.19) is not given in terms of (Riemannian)
covariant quantities, c is not expected to have a good behavior under change of coordinates. In normal coordinates, c reduces
to the first two terms and is equal to−R/6where R is the scalar curvature. A covariant approachwill be given in Theorem 2.4.

The spectral functions in (2.19) are given in terms of the universal function Id/2,1 by

Fw(r0, r1) = Id/2,1(r0, r1),

F∂v(r0, r1) = 2r0
Id/2,1(r0, r0) − Id/2,1(r0, r1)

d(r0 − r1)
,

F∂∂u(r0, r1) = −r0
4r0Id/2,1(r0, r0) +

(
(d − 4)r0 − dr1

)
Id/2,1(r0, r1)

d(r0 − r1)2
,

Fµ

∂u(r0, r1) = [
1
2α

µ
− βµ

]r0
4r0Id/2,1(r0, r0) +

(
(d − 4)r0 − dr1

)
Id/2,1(r0, r1)

d(r0 − r1)2
,

Fv,µ(r0, r1) = −αµr0
Id/2,1(r0, r0) − Id/2,1(r0, r1)

d(r0 − r1)
−

1
2 [

1
2αµ − βµ]Id/2,1(r0, r1),

Fv,v(r0, r1, r2) =
Id/2,1(r0, r1) − Id/2,1(r0, r2)

d(r1 − r2)
,

F∂u,v(r0, r1, r2) =
2r0
d

[
Id/2,1(r0, r0)

(r0 − r1)(r0 − r2)
+

Id/2,1(r0, r1)
(r1 − r0)(r1 − r2)

+
Id/2,1(r0, r2)

(r2 − r0)(r2 − r1)
],

Fv,∂u(r0, r1, r2) = −2r0
Id/2,1(r0, r0)

d(r0 − r2)(r1 − r2)
− 2r1

Id/2,1(r0, r1)
d(r1 − r2)2

−

(
(d − 4)r0r1 − (d − 2)r0r2 − (d − 2)r1r2 + dr22

)
Id/2,1(r0, r2)

d(r0 − r2)(r1 − r2)2
,

F∂u,∂u(r0, r1, r2) =
4r0

d(r0 − r1)(r0 − r2)2(r1 − r2)2

×
[
r0(r1 − r2)(r0 − 2r1 + r2)Id/2,1(r0, r0) + r1(r0 − r2)2Id/2,1(r0, r1)

+
1
2 (r0 − r1)

(
(d − 4)r0r1 − (d − 2)r0r2 − dr1r2 + (d + 2)r22

)
Id/2,1(r0, r2)

]
.

Theorem 2.4. For P given by (2.1), a2(a, P)(x) = tr[a(x)R2(x)] with

R2 =
1

2d πd/2 [
1
6R r−d/2+1

0 Er0 + Gq(r0, r1) Er0qEr1 + gµνG∇̂∇̂u(r0, r1) Er0 (∇̂µ∇̂νu)Er1
+ G∇̂p(r0, r1) Er0 (∇̂µpµ)Er1 + gµνG∇̂u,∇̂u(r0, r1, r2) Er0 (∇̂µu)Er1 (∇̂νu)Er2
+ Gp,∇̂u(r0, r1, r2) Er0p

µEr1 (∇̂µu)Er2 + G∇̂u,p(r0, r1, r2) Er0 (∇̂µu)Er1p
µEr2

+ Gp,p(r0, r1, r2) Er0p
µEr1pµEr2 ]

(2.20)

where the sums over the r0, r1, r2 in the spectrum of u are omitted, the spectral functions G are given below, and R is the scalar
curvature of g.

The spectral functions in (2.20) are given in terms of the spectral functions F by

Gq(r0, r1) := Fw(r0, r1)
= Gq(r1, r0),

G∇̂∇̂u(r0, r1) := F∂∂u(r0, r1) + F∂v(r0, r1)
= G∇̂∇̂u(r1, r0),

G∇̂p(r0, r1) := F∂v(r0, r1),
G∇̂u,∇̂u(r0, r1, r2) := F∂u,∂u(r0, r1, r2) + Fv,∂u(r0, r1, r2) + F∂u,v(r0, r1, r2) + Fv,v(r0, r1, r2)

= G∇̂u,∇̂u(r2, r1, r0),
Gp,∇̂u(r0, r1, r2) := Fv,∂u(r0, r1, r2) + Fv,v(r0, r1, r2),
G∇̂u,p(r0, r1, r2) := F∂u,v(r0, r1, r2) + Fv,v(r0, r1, r2)

= −Gp,∇̂u(r2, r1, r0),
Gp,p(r0, r1, r2) := Fv,v(r0, r1, r2)

= Gp,p(r2, r1, r0).

As shown in [1], the universal spectral functions Iα,k are continuous, so that all the spectral functions F and G are also
continuous, as can be deduced from their original expressions in terms of functions Iα,k given in the list (4.1) and the above
relations between the F and the G.
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Remark 2.5 (Homogeneity by Dilation). Using (1.2) and (1.4), we get Rr (λP) = λ(r−d)/2Rr (P) for any λ ∈ R∗
+
. The dilation

of P by λ is equivalent to the dilations of u, vµ, w, pµ, q by λ. Using Iα,k(λr0, . . . , λrk) = λ−α Iα,k(r0, . . . , rk) and the explicit
expressions of the spectral functions, all terms in (2.19) and (2.20) are λ-homogeneous of degree (2 − d)/2. □

Remark 2.6. The metric g plays a double role here: it is the metric of the Riemannian manifold (M, g) and it is the non-
degenerate tensor which multiply u in P . If one has to consider two operators P1 and P2 with tensors g1 and g2 on the same
manifold M , it may be not natural to take g1 or g2 as the Riemannian metric on M . It is possible to consider a metric h on
M different to the tensor g associated to P . In that case, we have to replace dvolg in (1.3) by dvolh and K (t, x, x, ) is then a
density for h, so that the true function is now |h|−1/2K (t, x, x), and |h|−1/2 appears in (2.15) and (2.16) in place of |g|

−1/2.
Now, the computation of Tk,p makes apparent the coefficient gd given by (2.17) where the metric g comes from P . Finally,
in (2.19) and (2.20), the two determinants do not simplify anymore, and one gets an extra factor |g|

1/2
|h|−1/2 in front ofR2,

which is now relative to ϕh(a) :=
∫
M tr[a(x)] dvolh(x). □

A change of connection as in Proposition 2.1 does not change the value ofR2. This induces the following relations between
the spectral functions G.

Proposition 2.7. The spectral functions G satisfy the relations:

G∇̂p(r0, r1) = −
r0Gq(r0, r1) + (r0 − r1)G∇̂∇̂u(r0, r1)

r0 + r1
,

G∇̂u,p(r0, r1, r2) = −
r2Gq(r0, r2) + (r0 + 3r2)G∇̂∇̂u(r0, r2) + (r0 + r2)(r1 − r2)G∇̂u,∇̂u(r0, r1, r2)

(r0 + r2)(r1 + r2)
,

Gp,∇̂u(r0, r1, r2) =
r0Gq(r0, r2) + (3r0 + r2)G∇̂∇̂u(r0, r2) + (r0 + r2)(r1 − r0)G∇̂u,∇̂u(r0, r1, r2)

(r0 + r2)(r1 + r0)
,

Gp,p(r0, r1, r2) = −
r1Gq(r0, r2) − (r0 − 2r1 + r2)G∇̂∇̂u(r0, r2) + (r0 − r1)(r1 − r2)G∇̂u,∇̂u(r0, r1, r2)

(r0 + r1)(r1 + r2)
.

Proof. Inserting the relations (2.6) into (2.20), all the terms involving φµ must vanish. This induces the following relations
between the G functions:

r0Gq(r0, r1) + (r0 − r1)G∇̂∇̂u(r0, r1) + (r0 + r1)G∇̂p(r0, r1) = 0,
G∇̂p(r0, r2) − (r0 − r1)G∇̂u,p(r0, r1, r2) − (r0 + r1)Gp,p(r0, r1, r2) = 0,

Gq(r0, r2) + G∇̂p(r0, r2) + (r1 − r2)Gp,∇̂u(r0, r1, r2) + (r1 + r2)Gp,p(r0, r1, r2) = 0,
2G∇̂∇̂u(r0, r2) − G∇̂p(r0, r2) − (r0 − r1)G∇̂u,∇̂u(r0, r1, r2) − (r0 + r1)Gp,∇̂u(r0, r1, r2) = 0,

Gq(r0, r2) + 2G∇̂∇̂u(r0, r2) + G∇̂p(r0, r2)
+ (r1 − r2)G∇̂u,∇̂u(r0, r1, r2) + (r1 + r2)G∇̂u,p(r0, r1, r2) = 0,

r0Gq(r0, r2) + (r0 − 2r1 + r2)G∇̂∇̂u(r0, r2) + (r0 − r2)G∇̂p(r0, r2)
+ (r0 − r1)(r1 − r2)G∇̂u,∇̂u(r0, r1, r2) + (r0 + r1)(r1 − r2)Gp,∇̂u(r0, r1, r2)

+ (r0 − r1)(r1 + r2)G∇̂u,p(r0, r1, r2) + (r0 + r1)(r1 + r2)Gp,p(r0, r1, r2) = 0.

One can checkdirectly that these relations hold true. From them, one can solveG∇̂p,G∇̂u,p,Gp,∇̂u, andGp,p in termsofGq,G∇̂∇̂u,
and G∇̂u,∇̂u. This gives the relations of the proposition. ■

These relations show that the four spectral functions G involved in terms with pµ are deduced from the three spectral
functions involving only u and q. This result is not a surprise: from Corollary 2.2 we know that we can start with pµ

= 0,
so that R2 is written in terms of the three functions Gq,G∇̂∇̂u,G∇̂u,∇̂u only, and then we can change the connection in
order to produce the most general expression for R2. In other words, among the seven spectral functions G, only three
are fundamental.

The spectral functions G can be computed explicitly, and their expressions depend on the value ofm. For d = 2 and d = 3,
these spectral functions are written in terms of the following functions:

Q1(a, b, c) :=
−3a3 + a2b − 6a2c + 6abc + ac2 + bc2

2(a − b)2(a − c)3
,

Q2(a, b, c) :=
1
2

[ 2
(a − b)(a − c)

+
a + b

(b − a)2(b − c)
ln(b/a) +

a + c
(c − a)2(c − b)

ln(c/a)
]
,

Q3(a, b, c) := 6
√
abc + a3/2 + 2b3/2 + c3/2 +

√
ac (

√
a +

√
c)

+ 2
(
a(

√
b +

√
c) + 2b(

√
a +

√
c) + c(

√
a +

√
b)

)
,

Q4(a, b, c) :=
a + b + c + 2

√
ab + 2

√
ac +

√
bc

√
bc(

√
a +

√
b)2(

√
a +

√
c)2(

√
b +

√
c)

.



B. Iochum, T. Masson / Journal of Geometry and Physics 129 (2018) 1–24 9

Corollary 2.8 (Case d = 2). In dimension two the spectral functions G can be written in terms of log functions:

R2 =
1
4π

[ 1
6R +

ln(r0/r1)
r0 − r1

Er0qEr1 +
1

r0 − r1

(
1 − r0

ln(r0/r1)
r0 − r1

)
Er0 (∇̂µpµ)Er1

−
1

(r0 − r1)2
(
r0 + r1 − 2r0r1

ln(r0/r1)
r0 − r1

)
gµνEr0 (∇̂µ∇̂νu)Er1

+
( (r0 + r2)(r0 − 2r1 + r2)
(r0 − r1)(r0 − r2)2(r1 − r2)
− Q1(r0, r1, r2) ln(r0/r1) − Q1(r2, r1, r0) ln(r2/r1)

)
gµνEr0 (∇̂µu)Er1 (∇̂νu)Er2

+ Q2(r0, r1, r2) Er0 (∇̂µu)Er1p
µEr2 − Q2(r2, r1, r0) Er0p

µEr1 (∇̂µu)Er2

+
(r1 − r2) ln(r0/r1) + (r0 − r1) ln(r2/r1)

2(r0 − r1)(r0 − r2)(r1 − r2)
Er0pµEr1p

µEr2
]
.

When d = 2m ≥ 4 is even, all the involved functions are Laurent polynomials as a direct consequence of [1, Prop. 3.5]:

Gq(r0, r1) =

∑
0≤ℓ≤m−2

1
m−1 rℓ+1−m

0 r−ℓ−1
1 ,

G∇̂∇̂u(r0, r1) = −

∑
0≤ℓ≤m−2

(m−ℓ−1)(ℓ+1)
m(m−1) rℓ+1−m

0 r−ℓ−1
1 ,

G∇̂p(r0, r1) = −

∑
0≤ℓ≤m−2

m−ℓ−1
m(m−1) r

ℓ+1−m
0 r−ℓ−1

1 ,

G∇̂u,∇̂u(r0, r1, r2) = −

∑
0≤ℓ≤k≤m−2

(2ℓ+1)(2k−2m+3)
2m(m−1) rk+1−m

0 rℓ−k−1
1 r−ℓ−1

2 ,

Gp,∇̂u(r0, r1, r2) = −

∑
0≤ℓ≤k≤m−2

2ℓ+1
2m(m−1) r

k+1−m
0 rℓ−k−1

1 r−ℓ−1
2 ,

G∇̂u,p(r0, r1, r2) = −

∑
0≤ℓ≤k≤m−2

2k−2m+3
2m(m−1) rk+1−m

0 rℓ−k−1
1 r−ℓ−1

2 ,

Gp,p(r0, r1, r2) = −

∑
0≤ℓ≤k≤m−2

1
2m(m−1) r

k+1−m
0 rℓ−k−1

1 r−ℓ−1
2 .

This implies the following expressions for R2:

Corollary 2.9 (Case d = 2m Even and d ≥ 4). Using the expressions of the spectral functions G as Laurent polynomials, one has

R2 =
1

22mπm

[ 1
6R u−m+1

+

∑
0≤ℓ≤m−2

1
m−1 uℓ+1−mqu−ℓ−1

−

∑
0≤ℓ≤m−2

m−ℓ−1
m(m−1) u

ℓ+1−m(∇̂µpµ)u−ℓ−1

−

∑
0≤ℓ≤m−2

(m−ℓ−1)(ℓ+1)
m(m−1) gµνuℓ+1−m(∇̂µ∇̂νu)u−ℓ−1

−

∑
0≤ℓ≤k≤m−2

(2ℓ+1)(2k−2m+3)
2m(m−1) gµνuk+1−m(∇̂µu)uℓ−k−1(∇̂νu)u−ℓ−1

−

∑
0≤ℓ≤k≤m−2

2k−2m+3
2m(m−1) uk+1−m(∇̂µu)uℓ−k−1pµu−ℓ−1

−

∑
0≤ℓ≤k≤m−2

2ℓ+1
2m(m−1) u

k+1−mpµuℓ−k−1(∇̂µu)u−ℓ−1

−

∑
0≤ℓ≤k≤m−2

1
2m(m−1) u

k+1−mpµuℓ−k−1pµu−ℓ−1]
=

1
22mπm

[ 1
6R u−m+1

+

∑
0≤ℓ≤m−2

1
m−1 uℓ+1−mqu−ℓ−1

−

∑
0≤ℓ≤m−2

(m−ℓ−1)
m(m−1) gµνuℓ+1−m[

∇̂µ

(
(ℓ + 1)∇̂νu + pν

)]
u−ℓ−1

−

∑
0≤ℓ≤k≤m−2

1
2m(m−1) g

µνuk+1−m [
(2k − 2m + 3)∇̂µu + pµ

]
uℓ−k−1 [

(2ℓ + 1)∇̂νu + pν

]
u−ℓ−1].
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Corollary 2.10 (Case d = 4). In dimension four these expressions simplify further to:

R2 =
1

16π2 [
1
6R u−1

+ u−1qu−1
−

1
2 u−1(∇̂µpµ)u−1

−
1
2 gµνu−1(∇̂µ∇̂νu)u−1

+
1
4 gµνu−1(∇̂µu)u−1(∇̂νu)u−1

+
1
4 u−1(∇̂µu)u−1pµu−1

−
1
4 u−1pµu−1(∇̂µu)u−1

−
1
4 u−1pµu−1pµu−1

]

=
1

16π2

[ 1
6R u−1

+u−1qu−1
−

1
2 gµνu−1

[∇̂µ(∇̂νu + pν)]u−1
+

1
4 gµνu−1

[∇̂µu − pµ]u−1
[∇̂νu + pν]u−1].

Corollary 2.11 (Case d = 3). In dimension three the spectral functions G can be written in terms of square roots of the ri
(see [1, Prop. 3.4]) and this leads to:

R2 =
1

8π3/2

[ 1
6R +

2
√
r0r1(

√
r0 +

√
r1)

Er0qEr1 −
2
3

2
√
r0 +

√
r1

√
r0r1(

√
r0 +

√
r1)2

Er0 (∇̂µpµ)Er1

−
2
3

√
r0r1 + (

√
r0 +

√
r1)2

√
r0r1(

√
r0 +

√
r1)3

gµνEr0 (∇̂µ∇̂νu)Er1

+
2
3

Q3(r0, r1, r2)
√
r1(

√
r0 +

√
r1)2(

√
r0 +

√
r2)3(

√
r1 +

√
r2)2

gµνEr0 (∇̂µu)Er1 (∇̂νu)Er2

+
2
3Q4(r0, r1, r2) Er0 (∇̂µu)Er1p

µEr2 −
2
3Q4(r2, r1, r0) Er0pµEr1p

µEr2

−
2
3

√
r0 +

√
r1 +

√
r2

√
r0r1r2(

√
r0 +

√
r1)(

√
r0 +

√
r2)(

√
r1 +

√
r2)

Er0pµEr1p
µEr2

]
.

To conclude this list of results given at various dimensions, we see that we have explicit expressions ofR2 for d even, and
moreover simple generic expressions for d = 2m, d ≥ 4, while for d odd it is difficult to propose a generic expression.

3. Some direct applications

3.1. The case a = 1

When a = 1, for any k ≥ 1, a cyclic operation can be performed under the trace:

f (r0, r1, . . . , rk) tr(Er0B1Er1B2 · · · BkErk ) = f (r0, r1, . . . , rk) tr(ErkEr0B1Er1B2 · · · Bk)
= δr0,rk f (r0, r1, . . . , rk) tr(ErkEr0B1Er1B2 · · · Bk)
= f (r0, r1, . . . , r0) tr(Er0B1Er1B2 · · · Erk−1Bk).

This implies that in all the spectral functions f (r0, r1, . . . , rk) one can put rk = r0 (remember that all the spectral functions
are continuous, so that rk → r0 is well-defined).

In [1, Theorem 4.3], a2(1, P) has been computed for d = 2m even, m ≥ 1. Let us first rewrite this result in terms of
spectral functions:

c r−m+1
0 E0 + r−m

0 E0w +
m−2
6 [

1
2α

µ
− βµ

] r−m
0 E0(∂µu) −

m−2
6 gµν r−m

0 E0(∂µ∂νu)

+
1
2βµ r−m

0 E0vµ
−

1
2 r−m

0 E0(∂µvµ) −
1
4mgµν

m−1∑
ℓ=0

r−ℓ−1
0 rℓ−m

1 E0vµE1vν

+
1
2m

m−1∑
ℓ=0

(m − 2ℓ) r−ℓ−1
0 rℓ−m

1 E0vµE1(∂µu) + gµν

m−1∑
ℓ=0

[
m−2
6 −

ℓ(m−ℓ−1)
2m ] r−ℓ−1

0 rℓ−m
1 E0(∂µu)E1(∂νu).

Notice that:

gµν

m−1∑
ℓ=0

r−ℓ−1
0 rℓ−m

1 tr(E0vµE1vν) = gµν

m−1∑
ℓ=0

r−ℓ−1
0 rℓ−m

1 tr(E1vνE0vµ) = gµν

m−1∑
ℓ=0

r−ℓ−1
1 rℓ−m

0 tr(E1vµE0vν)

if we change ℓ to m − ℓ − 1 in the summation and we use the symmetry of gµν . Then, to show that the spectral functions F
reduce to the ones above, one has to use the symmetry r0 ↔ r1 for some terms. A direct computation gives

Fw(r0, r0) = r−m
0 ,

Fµ

∂u(r0, r0) =
m−2
6 [

1
2α

µ
− βµ

] r−m
0 ,

F∂∂u(r0, r0) = −
m−2
6 r−m

0 ,

Fv,µ(r0, r0) =
1
2βµ r−m

0 ,

F∂v(r0, r0) = −
1
2 r−m

0 ,
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1
2 [Fv,v(r0, r1, r0) + Fv,v(r1, r0, r1)] = −

1
4m

m−1∑
ℓ=0

r−ℓ−1
0 rℓ−m

1 ,

1
2 [F∂u,∂u(r0, r1, r0) + F∂u,∂u(r1, r0, r1)] =

m−1∑
ℓ=0

[
m−2
6 −

ℓ(m−ℓ−1)
2m ] r−ℓ−1

0 rℓ−m
1 ,

Fv,∂u(r0, r1, r0) + F∂u,v(r1, r0, r1) =
1
2m

m−1∑
ℓ=0

(m − 2ℓ) r−ℓ−1
0 rℓ−m

1 .

In the last expression, under the trace we have tr(E0(∂µu)E1vµ) = tr(E1vµE0(∂µu)), and we need to sum the two functions
Fv,∂u and F∂u,v with their correct arguments.

These relations show that (2.19) reproduces [1, eq. 4.15] when a = 1.

3.2. Minimal Laplace type operators: u = 1

Starting from (2.1) when u = 1 one gets

P = −gµν
∇µ∇ν − (pν

− [
1
2α

ν
− βν

])∇ν − q

and two simplifications occur in (2.20): all derivatives of u vanish, and the spectrum of u reduces to sp(u) = {1}, so that all
spectral functions are taken at ri = 1 and Eri = 1. The result is then

R2 =
1

2d πd/2 [
1
6R + Gq(1, 1) q + G∇̂p(1, 1) ∇̂µpµ

+ Gp,p(1, 1, 1) pµpµ ].

A direct computation gives Gq(1, 1) = 1, G∇̂p(1, 1) = −
1
2 , and Gp,p(1, 1, 1) = −

1
4 , so that

R2 =
1

2d πd/2 [
1
6R + q −

1
2 ∇̂µpµ

−
1
4p

µpµ]. (3.1)

As in Proposition 2.1, we can change ∇̂µ to ∇̂
′
µ := ∇̂µ + φµ and solve φµ in order to get p′µ

= 0. From (2.4) with u = 1,
one has

gµν
∇̂

′

µ∇̂
′

ν + q′
= gµν(∇̂µ + φµ) (∇̂ν + φν) + q′

= gµν
∇̂µ∇̂ν + gµν(∇̂µφν) + 2gµνφν∇̂µ + gµνφµφν + q′

=: gµν
∇̂µ∇̂ν + pµ

∇̂µ + q

with pµ
= 2gµνφν and q = q′

+gµν(∇̂µφν)+gµνφµφν . This is solved for φµ =
1
2gµνpν and implies q′

= q−
1
2 ∇̂µpµ

−
1
4p

µpµ.
Injected into (3.1), this gives R2 =

1
2d πd/2 [

1
6R + q′

] as in [23, Theorem 3.3.1].

3.3. Conformal like transformed Laplacian

Let us consider a positive invertible element k ∈ Γ (End(V )), a covariant derivative ∇µ on V and ∆ = −gµν
∇̂µ∇̂ν be its

associated Laplacian. Motivated by the conformal deformations worked out in [6–8], we consider the operator

P := k∆k = −gµνk2∇̂µ∇̂ν − 2gµνk(∇̂µk) ∇̂ν + k(∆k).

Actually, it isworthwhile to quote that the conformal change ofmetrics on the noncommutative tori is not as straightforward
as copying the notation of the commutative tori since deep theories in operator algebras are involved. However, the result
obtained in this section for the operator P will be used to compute R2 for the noncommutative tori in Section 5.

The operator P can be written as in (2.4) with

u = k2, pν
= gµνk(∇̂µk) − gµν(∇̂µk)k, q = −k(∆k).

Application of Theorem 2.4 gives

Rk∆k
2 =

1
2d πd/2

[ 1
6R r−d/2+1

0 Er0 (3.2)

+ F k∆k
∆k (r0, r1) Er0 (∆k)Er1 + F k∆k

∇k∇k(r0, r1, r2)g
µν Er0 (∇µk)Er1 (∇νk)Er2

]
with

F k∆k
∆k (r0, r1) = −

√
r0 Gq(r0, r1) − (

√
r0 +

√
r1)G∇̂∇̂u(r0, r1) − (

√
r0 −

√
r1)G∇̂p(r0, r1), (3.3)

F k∆k
∇k∇k(r0, r1, r2) = 2G∇̂∇̂u(r0, r2)

+ (
√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,∇̂u(r0, r1, r2)

+ (
√
r0 −

√
r1)(

√
r1 +

√
r2)Gp,∇̂u(r0, r1, r2)

+ (
√
r0 +

√
r1)(

√
r1 −

√
r2)G∇̂u,p(r0, r1, r2)

+ (
√
r0 −

√
r1)(

√
r1 −

√
r2)Gp,p(r0, r1, r2).

(3.4)
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Using Proposition 2.7, one has

F k∆k
∆k (r0, r1) = −

√
r0r1 (

√
r0 +

√
r1)[Gq(r0, r1) + 2G∇̂∇̂u(r0, r1)]

r0 + r1
.

4. Details of the computations

In this section we give some details on the computations to establish Theorems 2.3 and 2.4. These computations can be
done by hand but the reader can also follow [5].

The equation of (2.19) requires to compute the terms in the sum (2.16), which itself requires to compute the arguments
B1 ⊗ · · · ⊗ Bk and the operators Tk,p.

For r = 2, the list of arguments has been evaluated in [1, Section 4.1] (starting with the expression (1.1) of P) as well as
their contractions with the tensor G(g)µ1...µ2p . We make use of these results below. Then the computation of the operators
Tk,p reduces to the computation of the universal spectral functions Id/2+p,k. As noticed in [1], only the values k = 1, 2, 3, 4
have to be considered.

Below is the list of the evaluation of these arguments in the corresponding operators Tk,p, where the following functional
calculus rule (and its obvious generalizations) is used

f (r0, r1, . . . , rk) Er0u
n0Er1u

n1Er2 · · · unk−1Erk = rn0+n1+···+nk−1
0 f (r0, r0, . . . , r0) Er0 ,

where summations over ri in the spectrum of u are omitted. In the following, the symbol ⇝ is used to symbolize this
evaluation.

For k = 1, there is only one argument:

w ⇝ Id/2,1(r0, r1) Er0wEr1 .

For k = 2, one has:

−
1
2g

µνgρσ (∂µ∂νgρσ ) u ⊗ u ⇝ −
1
2g

µνgρσ (∂µ∂νgρσ ) r20 Id/2+1,2(r0, r0, r0) Er0 ,

− gµνgρσ (∂νgρσ ) u ⊗ ∂µu ⇝ −gµνgρσ (∂νgρσ ) r0Id/2+1,2(r0, r0, r1) Er0 (∂µu)Er1 ,

−
d
2g

µν u ⊗ ∂µ∂νu ⇝ −
d
2g

µν r0Id/2+1,2(r0, r0, r1) Er0 (∂µ∂νu)Er1 ,

−
1
2gρσ (∂µgρσ ) vµ

⊗ u ⇝ −
1
2gρσ (∂µgρσ ) r1Id/2+1,2(r0, r1, r1) Er0v

µEr1 ,

−
d
2 vµ

⊗ ∂µu ⇝ −
d
2 Id/2+1,2(r0, r1, r2) Er0v

µEr1 (∂µu)Er2 ,

−
1
2gµν vµ

⊗ vν ⇝ −
1
2gµν Id/2+1,2(r0, r1, r2) Er0v

µEr1v
νEr2 ,

− u ⊗ ∂µvµ ⇝ − r0Id/2+1,2(r0, r0, r1) Er0 (∂µvµ)Er1 .

For k = 3, one has:[
gµνgρσ (∂µ∂νgρσ ) + 2(∂µ∂νgµν) + gρσ (∂µgµν)(∂νgρσ ) + 2gρσ (∂µgνρ)(∂νgµσ )

+
1
2g

µνgρσ gαβ (∂µgρσ )(∂νgαβ ) + gµνgρσ gαβ (∂µgρα)(∂νgσβ )
]
u ⊗ u ⊗ u

⇝
[
gµνgρσ (∂µ∂νgρσ ) + 2(∂µ∂νgµν) + gρσ (∂µgµν)(∂νgρσ ) + 2gρσ (∂µgνρ)(∂νgµσ )

+
1
2g

µνgρσ gαβ (∂µgρσ )(∂νgαβ ) + gµνgρσ gαβ (∂µgρα)(∂νgσβ )
]
r30 Id/2+2,3(r0, r0, r0, r0) Er0 ,

(d + 6)[ 12g
µνgρσ (∂νgρσ ) + (∂νgµν)] u ⊗ u ⊗ ∂µu

⇝ (d + 6)[ 12g
µνgρσ (∂νgρσ ) + (∂νgµν)] r20 Id/2+2,3(r0, r0, r0, r1) Er0 (∂µu)Er1 ,

[
d+4
2 gµνgρσ (∂νgρσ ) + 2(∂νgµν)] u ⊗ ∂µu ⊗ u

⇝ [
d+4
2 gµνgρσ (∂νgρσ ) + 2(∂νgµν)] r0r1Id/2+2,3(r0, r0, r1, r1) Er0 (∂µu)Er1 ,

(d+2)2
2 gµν u ⊗ ∂µu ⊗ ∂νu ⇝ (d+2)2

2 gµν r0Id/2+2,3(r0, r0, r1, r2) Er0 (∂µu)Er1 (∂νu)Er2 ,

(d + 2)gµν u ⊗ u ⊗ ∂µ∂νu ⇝ (d + 2)gµν r20 Id/2+2,3(r0, r0, r0, r1) Er0 (∂µ∂νu)Er1 ,

[
1
2gρσ (∂µgρσ ) + gµν(∂ρgρν)](vµ

⊗ u ⊗ u + u ⊗ vµ
⊗ u + u ⊗ u ⊗ vµ)

⇝ [
1
2gρσ (∂µgρσ ) + gµν(∂ρgρν)]

[
r21 Id/2+2,3(r0, r1, r1, r1)

+ r0r1Id/2+2,3(r0, r0, r1, r1) + r20 Id/2+2,3(r0, r0, r0, r1)
]
Er0v

µEr1 ,

d+2
2 (vµ

⊗ u ⊗ ∂µu) ⇝ d+2
2 r1Id/2+2,3(r0, r1, r1, r2) Er0v

µEr1 (∂µu)Er2 ,

d+2
2 (u ⊗ ∂µu ⊗ vµ) ⇝ d+2

2 r0Id/2+2,3(r0, r0, r1, r2) Er0 (∂µu)Er1v
µEr2 ,

d+2
2 (u ⊗ vµ

⊗ ∂µu) ⇝ d+2
2 r0Id/2+2,3(r0, r0, r1, r2) Er0v

µEr1 (∂µu)Er2 .
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For k = 4, one has:

3
[
−

1
2g

µνgρσ gαβ (∂µgρσ )(∂νgαβ ) − gµνgρσ gαβ (∂µgρα)(∂νgσβ ) − 2gρσ (∂µgµν)(∂νgρσ )

− 2gρσ (∂µgµρ)(∂νgνσ ) − 2gρσ (∂µgνρ)(∂νgµσ )
]
u ⊗ u ⊗ u ⊗ u

⇝ 3
[
−

1
2g

µνgρσ gαβ (∂µgρσ )(∂νgαβ ) − gµνgρσ gαβ (∂µgρα)(∂νgσβ ) − 2gρσ (∂µgµν)(∂νgρσ )

− 2gρσ (∂µgµρ)(∂νgνσ ) − 2gρσ (∂µgνρ)(∂νgµσ )
]
r40 Id/2+3,4(r0, r0, r0, r0, r0) Er0 ,

− (d + 4)[ 12g
µνgρσ (∂νgρσ ) + (∂νgµν)][3 u ⊗ u ⊗ u ⊗ ∂µu

+ 2 u ⊗ u ⊗ ∂µu ⊗ u + u ⊗ ∂µu ⊗ u ⊗ u]

⇝ −(d + 4)[ 12g
µνgρσ (∂νgρσ ) + (∂νgµν)][3r30 Id/2+3,4(r0, r0, r0, r0, r1)

+ 2r20 r1Id/2+3,4(r0, r0, r0, r1, r1) + r0r21 Id/2+3,4(r0, r0, r1, r1, r1)]Er0 (∂µu)Er1 ,

−
1
2 (d + 4)(d + 2)gµν (2 u ⊗ u ⊗ ∂µu ⊗ ∂νu + u ⊗ ∂µu ⊗ u ⊗ ∂νu)

⇝ −
1
2 (d + 4)(d + 2)gµν

[2r20 Id/2+3,4(r0, r0, r0, r1, r2) + r0r1Id/2+3,4(r0, r0, r1, r1, r2)]
Er0 (∂µu)Er1 (∂νu)Er2 .

The coefficient c and the spectral functions F are evaluated by collecting these terms:

c :=
1
3 (∂µ∂νgµν) −

1
12g

µνgρσ (∂µ∂νgρσ ) +
1
48g

µνgρσ gαβ (∂µgρσ )(∂νgαβ )

+
1
24g

µνgρσ gαβ (∂µgρα)(∂νgσβ ) −
1
12gρσ (∂µgµν)(∂νgρσ )

+
1
12gρσ (∂µgνρ)(∂νgµσ ) −

1
4gρσ (∂µgµρ)(∂νgνσ ),

Fw(r0, r1) := Id/2,1(r0, r1),
F∂v(r0, r1) := − r0Id/2+1,2(r0, r0, r1),

F∂∂u(r0, r1) := −
d
2 r0Id/2+1,2(r0, r0, r1) + (d + 2) r20 Id/2+2,3(r0, r0, r0, r1),

Fµ

∂u(r0, r1) := − αµ r0Id/2+1,2(r0, r0, r1) + (d + 6)[ 12α
µ

+ βµ
] r20 Id/2+2,3(r0, r0, r0, r1)

+ [
d+4
2 αµ

+ 2βµ
] r0r1Id/2+2,3(r0, r0, r1, r1)

− (d + 4)[ 12α
µ

+ βµ
][3r30 Id/2+3,4(r0, r0, r0, r0, r1)

+ 2r20 r1Id/2+3,4(r0, r0, r0, r1, r1) + r0r21 Id/2+3,4(r0, r0, r1, r1, r1)],

Fv,µ(r0, r1) := −
1
2αµ r1Id/2+1,2(r0, r1, r1) + [

1
2αµ + βµ] [r21 Id/2+2,3(r0, r1, r1, r1)

+ r0r1Id/2+2,3(r0, r0, r1, r1) + r20 Id/2+2,3(r0, r0, r0, r1)],

Fv,v(r0, r1, r2) := −
1
2 Id/2+1,2(r0, r1, r2),

F∂u,v(r0, r1, r2) :=
d+2
2 r0Id/2+2,3(r0, r0, r1, r2),

Fv,∂u(r0, r1, r2) := −
d
2 Id/2+1,2(r0, r1, r2) +

d+2
2 r1Id/2+2,3(r0, r1, r1, r2)

+
d+2
2 r0Id/2+2,3(r0, r0, r1, r2),

F∂u,∂u(r0, r1, r2) :=
(d+2)2

2 r0Id/2+2,3(r0, r0, r1, r2)

−
(d+4)(d+2)

2 [2r20 Id/2+3,4(r0, r0, r0, r1, r2) + r0r1Id/2+3,4(r0, r0, r1, r1, r2)].

(4.1)

As in [1, Section 4.3], the strategy to compute (2.20) could be to make the change of variables (u, vµ, w) ↦→ (u, pµ, q).
Here we use another strategy which simplifies the computation since it is based on (2.8), (2.9), and (2.10).

Indeed, as already noticed, one can apply verbatim the computation of the arguments and their contractions with ∂µ

replaced by ∇µ, and at the same time, using pµ
+ gµν(∇νu) − [

1
2α

µ
− βµ

]u in place of vµ, and q in place of w. So, (2.19) can
be replaced by

c r−d/2+1
0 Er0 + Fµ

∂u(r0, r1) Er0 (∇µu)Er1 + gµνF∂∂u(r0, r1) Er0 (∇µ∇νu)Er1
+ gµνF∂u,∂u(r0, r1, r2) Er0 (∇µu)Er1 (∇νu)Er2 + Fw(r0, r1) Er0wEr1 + Fv,µ(r0, r1) Er0v

µEr1
+ Fv,∂u(r0, r1, r2) Er0v

µEr1 (∇µu)Er2 + F∂u,v(r0, r1, r2) aEr0 (∇µu)Er1v
µEr2

+ gµνFv,v(r0, r1, r2) Er0v
µEr1v

νEr2 + F∂v(r0, r1) Er0 (∇µvµ)Er1 .

The next step is to replace ∇µ by ∇̂µ. We use (2.2), (2.3) and

∇µvµ
= ∇µpµ

+ (∂µgµν)(∇νu) + gµν(∇µ∇νu) − [
1
2∂µαµ

− ∂µβµ
]u − [

1
2α

µ
− βµ

](∇µu)

= ∇µpµ
+ gµν(∇̂µ∇̂νu) + βµ(∇̂µu) − [

1
2∂µαµ

− ∂µβµ
]u

= ∇̂µpµ
+

1
2αµpµ

+ gµν(∇̂µ∇̂νu) + βµ(∇̂µu) − [
1
2∂µαµ

− ∂µβµ
]u.
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This leads to a new expression containing the terms in (2.20), with the functions given in the list after Theorem 2.4, to which
we have to add the two terms Gµ

∇̂u
(r0, r1) Er0 (∇̂µu)Er1 + Gp,µ(r0, r1)Er0p

µEr1 , with

Gµ

∇̂u
(r0, r1) = Fµ

∂u(r0, r1) + gµν Fv,ν(r0, r1) + βµ F∂v(r0, r1)

+ [
1
2α

µ
− βµ

][F∂∂u(r0, r1) − r0Fv,∂u(r0, r0, r1) − r1F∂u,v(r0, r1, r1)
− r0Fv,v(r0, r0, r1) − r1Fv,v(r0, r1, r1)],

Gp,µ(r0, r1) = Fv,µ(r0, r1) +
1
2αµF∂v(r0, r1)

− [
1
2αµ − βµ] [r0Fv,v(r0, r0, r1) + r1Fv,v(r0, r1, r1)].

A direct computation performed using the expressions of the spectral functions F in terms of Id/2,1 shows that

Gµ

∇̂u
(r0, r1) = Gp,µ(r0, r1) = 0,

and the following symmetries

Gq(r0, r1) = Gq(r1, r0), G∇̂∇̂u(r0, r1) = G∇̂∇̂u(r1, r0), G∇̂u,∇̂u(r0, r1, r2) = G∇̂u,∇̂u(r2, r1, r0),

so that, using Proposition 2.7, one gets

G∇̂u,p(r0, r1, r2) = −Gp,∇̂u(r2, r1, r0), Gp,p(r0, r1, r2) = Gp,p(r2, r1, r0).

The coefficient in front of r−d/2+1
0 Er0 is

1
6R = c −

1
4α

µβµ +
1
2β

µβµ +
1
4∂µαµ

−
1
2∂µβµ

−
1
16αµαµ

+
1
4αµβµ

−
1
4βµβµ,

where R is the scalar curvature of the metric g .
The spectral functions G can be written in terms of log functions for d = 2 (see [1, Cor. 3.3]), as Laurent polynomials for

d ≥ 4 even (see [1, Prop. 3.5]), and in terms of square roots of ri for d odd (see [1, Prop. 3.4]). This completes the proof of
Corollaries 2.8, 2.9, and 2.11.

5. Applications to the noncommutative torus

In this section, we first apply Theorem 2.4 to the noncommutative 2-torus at rational values of the deformation parameter
θ , for which it is known that we get a geometrical description in terms of sections of a fiber bundle. Some computations of
a2(a, P) for specific operators P have been performed at irrational values of θ to determine the so-called scalar curvature
(our R2) [6–11,13–18].

We now show that we can apply our general result at rational values of θ and get the same expressions for the scalar
curvature R2 which appears to be written in terms of θ-independent spectral functions. In particular, its expression is the
same for rational and irrational θ .

Let Θ ∈ Md(R) be a skew-symmetric real matrix. The noncommutative d-dimensional torus C(Td
Θ ) is defined as the

universal unital C∗-algebra generated by unitaries Uk, k = 1, . . . , d, satisfying the relations

UkUℓ = e2iπΘk,ℓUℓUk. (5.1)

This C∗-algebra contains, as a dense sub-algebra, the space of smooth elements for the natural action of the d-dimensional
torus Td on C(Td

Θ ). This sub-algebra is described as elements in C(Td
Θ ) with an expansion

a =

∑
(ki)∈Zd

ak1,...,kdU
k1
1 · · ·Ukd

d

where the sequence (ak1,...,kd ) belongs to the Schwartz space S(Zd).We denote by C∞(Td
Θ ) this algebra. The C∗-algebra C(Td

Θ )
has a unique normalized faithful positive trace twhose restriction on smooth elements is given by

t (
∑

(ki)∈Zd

ak1,...,kdU
k1
1 · · ·Ukd

d ) := a0,...,0. (5.2)

This trace satisfies t (1) = 1 where 1 in the unit element of C(Td
Θ ). The smooth algebra C∞(Td

Θ ) has d canonical derivations
δµ, µ = 1, . . . , d, defined on the generators by

δµ(Uk) := δµ,k iUk. (5.3)

For any a ∈ C(Td
Θ ), one has δµ(a∗) = (δµa)∗ (real derivations).

Denote by H the Hilbert space of the GNS representation of C(Td
Θ ) defined by t. Each derivation δµ defines a unbounded

operator on H, denoted also by δµ, which satisfies δ†
µ = −δµ (here † denotes the adjoint of the operator).
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5.1. The geometry of the rational noncommutative tori

In the following, we consider the special case of even dimensional noncommutative tori, d = 2m, with

Θ =

⎛⎜⎝θ1χ · · · 0

0
. . . 0

0 · · · θmχ

⎞⎟⎠ , where χ :=

(
0 1

−1 0

)
, (5.4)

for a family of deformation parameters θ1, . . . , θm. Then

C(T2m
Θ ) ≃ C(T2

Θ1
) ⊗ · · · ⊗ C(T2

Θm
).

When d = 2 and θ = p/q, where p, q are relatively prime integers and q > 0, it is known that C(T2
Θ ) ≃ Γ (Aθ ) is

isomorphic to the algebra of continuous sections of a fiber bundle Aθ in Mq(C) algebras over a 2-torus T2
B, as recalled in

Appendix A. Similarly, for d = 4, with θ1 = p1/q1 and θ2 = p2/q2, C(T4
Θ ) is the space of sections of a fiber bundle inMq1q2 (C)

algebras over a 4-torus T2
B,1 × T2

B,2.
Moreover, in the identification C∞(T2

Θ ) ≃ Γ ∞(Aθ ), the two derivations δµ are the two components of the unique flat
connection ∇µ on Aθ .

This geometrical description allows to use the results of Section 2 to compute a2(a, P) for a differential operator on H of
the form P = −gµνuδµδν − [pν

+ gµν(δµu) − ( 12α
ν
− βν)u]δν − q.

5.2. The noncommutative two torus

In this section, we compute the coefficient a2(a, P) on the rational noncommutative two torus for a differential operator
P considered in [6,8,9,7] for the irrational noncommutative two torus. Let us introduce the following notations.

Let τ = τ1 + iτ2 ∈ Cwith non zero imaginary part. We consider the constant metric g defined by

g11
= 1, g12

= g21
= ℜ(τ ) = τ1, g22

= |τ |
2,

with inverse matrix

g11 =
|τ |

2

ℑ(τ )2
=

|τ |
2

τ22
, g12 = g21 = −

ℜ(τ )
ℑ(τ )2

= −
τ1
τ22

, g22 =
1

ℑ(τ )2
=

1
τ22

.

We will use the constant tensors

ϵ1
:= 1, ϵ2

:= τ , ϵ̄1
= 1, ϵ̄2

= τ̄ , hµν
:= ϵ̄µϵν,

which imply h11
= 1, h12

= τ , h21
= τ̄ , h22

= |τ |
2. Then the symmetric part of hµν is the metric, gµν

=
1
2 (h

µν
+ hνµ), and

gµν ϵ̄
µϵ̄ν

= 0.
On the (GNS) Hilbert space H, consider the following operators δ, δ† and the Laplacian:

δ := ϵ̄µδµ = δ1 + τ̄ δ2, δ†
= −ϵµδµ = −δ1 − τδ2

∆ := δ†δ = −ϵµϵ̄νδµδν = −hµνδµδν = −gµνδµδν .

For k ∈ C∞(Td
Θ ), k > 0, the operator P is defined as

P :=

(
P1 0
0 P2

)
(5.5)

with

P1 := k∆k = −gµνkδµδνk = −gµνk2δµδν − 2gµνk(δνk)δµ − gµνk(δµδνk)
=: −u1gµνδµδν − v

µ

1 δµ − w1,

P2 := δ†k2δ = −ϵν ϵ̄µδνk2δµ = −ϵ̄µϵν(δνk2)δµ − ϵ̄µϵνk2δµδν = −gµνk2δµδν − hµν(δνk2)δµ

=: −u2gµνδµδν − v
µ

2 δµ − w2,

so that

u1 = k2, v
µ

1 = 2gµνk(δνk), w1 = −k(∆k),

u2 = k2, v
µ

2 = hµν(δνk2) = hµν
[k(δνk) + (δνk)k], w2 = 0.

For the forthcoming computations, since the metric g is constant, we have c = R = αµ
= βµ

= 0, ∇̂µ = ∇µ = δµ

(the last equality being a property of the geometrical presentation of C∞(Td
Θ ), as recalled above), Fµ

∂u = Fv,µ = 0. Here
|g|

1/2
= det(gµν)1/2 = τ−1

2 . We can write P1 and P2 in the covariant form (2.1) with

u1 = k2, pµ

1 = gµν
[
k(δνk) − (δνk)k

]
, q1 = −k(∆k),



16 B. Iochum, T. Masson / Journal of Geometry and Physics 129 (2018) 1–24

u2 = k2, pµ

2 = (hµν
− gµν)

[
k(δνk) + (δνk)k

]
, q2 = 0.

Let

f µν
:=

1
2 (h

µν
− hνµ),

so that hµν
= gµν

+ f µν and hνµ
= gµν

− f µν , and define

Qg (a, b, c) :=

√
a(a

√
b + 3a

√
c −

√
ac −

√
abc − 2b

√
c)

(a − b)(
√
a −

√
b)(

√
a −

√
c)3

,

Qf (a, b, c) :=
a(

√
b +

√
c)

(a − b)(
√
a −

√
b)(a − c)

,

with the following (spectral) functions

F∆k(r0, r1) :=
r0 − r1 −

√
r0r1 ln(r0/r1)

(
√
r0 −

√
r1)3

, (5.6)

Fµν

∂k∂k(r0, r1, r2) :=
gµν(

√
r0 +

√
r2)(

√
r0 − 2

√
r1 +

√
r2) + f µν(

√
r0 −

√
r2)2

(
√
r0 −

√
r1)(

√
r0 −

√
r2)2(

√
r1 −

√
r2)

+ [gµνQg (r0, r1, r2) − f µνQf (r0, r1, r2)] ln(r0/r1)
+ [gµνQg (r2, r1, r0) − f µνQf (r2, r1, r0)] ln(r2/r1).

(5.7)

As in Appendix B, we use in the following result the simplified notation ϕ(a) instead of ϕ ◦ L ◦ S(a), where ϕ is defined in
(1.5), while L and S are defined in Appendix A. Moreover, ϕ and the trace t defined in (5.2) are related by the normalization
(A.3).

Proposition 5.1. For the 2-dimensional noncommutative torus at rational values of the deformation parameter θ , one has
a2(a, P) = ϕ(aR2) for any a ∈ C(T2

Θ ) with

R2 =
1
4π

[F∆k(r0, r1) Er0 (∆k)Er1 + Fµν

∂k∂k(r0, r1, r2) Er0 (δµk)Er1 (δνk)Er2 ]. (5.8)

Since we are in dimension d = 2, the appearance of the log function in this result is expected. It is shown in Appendix B
that this result coincides with a previous one in [8, Theorem 5.2] for the irrational noncommutative two torus.

WhileR2 does depend on the deformation parameter θ , and in particular if it is irrational or not, the spectral functions F∆k
and Fµν

∂k∂k do not. This universalitywas obtained in [7]. Nevertheless, the fact thatR2 can bewritten in terms of θ-independent
spectral functions needs a more conceptual interpretation.

The spectrum of the differential operator P depends on the differential operators δµ and some multiplication operators
by elements of the algebra (written here in terms of k and its derivatives δµk, δµδνk). On the one hand, the spectrum of the
closed extension of the operator δµ in the Hilbert space of the GNS representation consists only of eigenvalues ikµ, kµ ∈ Z,
associated to eigenvectors Uk1

1 · · ·Ukd
d , so that it does not depend explicitly of θ . On the other hand, the computations ofR2,

performed here or in [6,8,9,7], are based on formal manipulations of the product in the algebra, in particular they do not use
the defining relations (5.1). This explains why these methods bypass the θ dependency and give rise to some expressions in
terms of θ-independent spectral functions. Notice that for specific values of θ , for instance θ = 0 (the commutative case),
these expressions can be simplified. So, one has to look at (5.8) as a ‘‘θ universal’’ expression for R2.

Proof. One has a2(a, P) = a2(a, P1) + a2(a, P2). Denote by R2 (resp. R
(1)
2 , R(2)

2 ) the expressions associated to P (resp. P1, P2).
Then one has R2 = R(1)

2 + R(2)
2 .

The operator P1 is a conformal like transformed Laplacian, so the computation of R(1)
2 is a direct consequence of (3.2) in

Section 3.3. Here the metric is constant, so that R = 0, and it remains

R(1)
2 =:

1
4π

[
F(1)∆k(r0, r1) Er0 (∆k)Er1 + Fµν

(1)∂k∂k(r0, r1, r2) Er0 (δµk)Er1 (δνk)Er2
]
,

where, using (3.3) and (3.4),

F(1)∆k(r0, r1) = −
√
r0 Gq(r0, r1) − (

√
r0 +

√
r1)G∇̂∇̂u(r0, r1) − (

√
r0 −

√
r1)G∇̂p(r0, r1),

Fµν

(1)∂k∂k(r0, r1, r2) = 2gµνG∇̂∇̂u(r0, r2)
+ gµν(

√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,∇̂u(r0, r1, r2)

+ gµν(
√
r0 −

√
r1)(

√
r1 +

√
r2)Gp,∇̂u(r0, r1, r2)

+ gµν(
√
r0 +

√
r1)(

√
r1 −

√
r2)G∇̂u,p(r0, r1, r2)

+ gµν(
√
r0 −

√
r1)(

√
r1 −

√
r2)Gp,p(r0, r1, r2).
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For the operator P2, one applies Theorem 2.4:

R(2)
2 =

1
4π

[
(
√
r0 +

√
r1)G∇̂∇̂u(r0, r1) g

µνEr0 (δµδνk)Er1 + 2G∇̂∇̂u(r0, r2) g
µνEr0 (δµk)Er1 (δνk)Er2

+ (
√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,∇̂u(r0, r1, r2) g

µνEr0 (δµk)Er1 (δνk)Er2
+ (

√
r0 +

√
r1)(

√
r1 +

√
r2)Gp,∇̂u(r0, r1, r2) (h

νµ
− gµν)Er0 (δµk)Er1 (δνk)Er2

+ (
√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,p(r0, r1, r2) (h

µν
− gµν)Er0 (δµk)Er1 (δνk)Er2

− (
√
r0 +

√
r1)(

√
r1 +

√
r2)Gp,p(r0, r1, r2) gµνEr0 (δµk)Er1 (δνk)Er2

]
=:

1
4π

[F(2)∆k(r0, r1) Er0 (∆k)Er1 + Fµν

(2)∂k∂k(r0, r1, r2) Er0 (δµk)Er1 (δνk)Er2 ],

with

F(2)∆k(r0, r1) = −(
√
r0 +

√
r1)G∇̂∇̂u(r0, r1),

Fµν

(2)∂k∂k(r0, r1, r2) = 2gµνG∇̂∇̂u(r0, r2)
+ gµν(

√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,∇̂u(r0, r1, r2)

+ (hνµ
− gµν)(

√
r0 +

√
r1)(

√
r1 +

√
r2)Gp,∇̂u(r0, r1, r2)

+ (hµν
− gµν)(

√
r0 +

√
r1)(

√
r1 +

√
r2)G∇̂u,p(r0, r1, r2)

− gµν(
√
r0 +

√
r1)(

√
r1 +

√
r2)Gp,p(r0, r1, r2).

Then F∆k := F1,∆k + F2,∆k and Fµν

∂k∂k := Fµν

1,∂k∂k + Fµν

2,∂k∂k simplify as in (5.6) and (5.7). The expression obtained forR2 shows
that it belongs to C(T2

Θ ) and acts by left multiplication on H. ■

5.3. The noncommutative four torus

Our result applies to the computation of the conformally perturbed scalar curvature on the noncommutative four torus,
computed in [11,14]. In order to do that, as in dimension 2, we perform the computation at rational value of θ as described
at the end of Appendix A.

The operator we consider is the one in [11], written as

∆ϕ := k2∂̄1k−2∂1k2 + k2∂1k−2∂̄1k2 + k2∂̄2k−2∂2k2 + k2∂2k−2∂̄2k2

with (in our notations) k2 := eh, ∂1 := −δ1 + iδ3, ∂̄1 := −δ1 − iδ3, ∂2 := −δ2 + iδ4, and ∂̄2 := −δ2 − iδ4. Indeed, in [11,14],
the derivations are δ̂µ = −iδµ. This leads to

∆ϕ = −2
[
k2gµνδµδν + gµν(δνk2)δµ + gµν(δµδνk2) − gµν(δµk2)k−2(δνk2)

]
=: 2P .

The metric gµν is the diagonal one in [11], but in the following computation, we only require gµν to be constant.
Let us mention that in [11,14], the computation of the scalar curvature is done using P defined above (and not ∆ϕ), since

the symbol in [11, Lemma 3.6] is the one of P . So we will use P in the following. We get P =: −ugµνδµδν − vµδµ − w with

u = k2, vµ
= gµν(δνk2), w = gµν(δµδνk2) − gµν(δµk2)k−2(δνk2).

Since g is constant, we have as before c = R = αµ
= βµ

= 0 and ∇̂µ = ∇µ = δµ and this implies pµ
= 0 and

q = gµν(δµδνk2) − gµν(δµk2)k−2(δνk2) in the covariant form (2.1). We then use the result of Corollary 2.10 to get the
conformally perturbed scalar curvature:

R2 =
1

25π2 [gµνk−2(δµδνk2)k−2
−

3
2g

µνk−2(δµk2)k−2(δνk2)k−2
]. (5.9)

In Appendix B it is shown that we recover the result previously obtained in [11,14] for the irrational noncommutative
four torus.

6. Conclusion

In this paper, we have computed in all dimensions the local section R2 of End(V ) defined by a2(a, P) =
∫
M tr[a(x)R2(x)]

dvolg (x) for any section a of End(V ) for any nonminimal Laplace type operator P = −[gµνu(x)∂µ∂ν + vν(x)∂ν + w(x)]
(Theorems 2.3 and 2.4). Expressions have been given for R2 in small dimensions, d = 2, 3, 4 (Corollary 2.8, 2.10, and 2.11)
and for any even dimension d ≥ 2 (Corollary 2.9), where, as expected from the results in [1], polynomials expressions can
be proposed.

Despite the difficulties, a4(a, P) has been exhibited for d = 2 in [18] for the 2-dimensional noncommutative torus, leaving
open the computation ofR4.We hope that ourmethod could be used to reachR4 in any dimension, using a computer algebra
system in the more general framework of an arbitrary P , like (1.1).

Our method still applies to more general setting than the NCT at rational values of the deformation parameter, namely to
n-homogeneous C∗-algebras, which can be characterized in terms of sections of fiber bundleswith fiber spaceMn(C) [24,25].
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Appendix A. Geometrical identification of the noncommutative torus at rational values

For d = 2 and θ := p/q rational, with p, q relatively prime integers with q > 0, it is known (see [26, Prop. 12.2],
[27, Sect. 3]) that the algebra C(T2

Θ ) of the NCT identifies with the algebra Γ (Aθ ) of continuous sections of a fiber bundle Aθ

inMq(C) algebras over a 2-torus T2
B. Let us describe this identification.

Denote by T2
P the 2-torus given by identification of opposite sides of the square [0, 2π ]

2. An element in T2
P is written as

(eix, eiy) for (x, y) ∈ [0, 2π ]
2. There is a natural action of the (abelian discrete) group G := Z2

q on T2
P : (m, n) · (eix, eiy) :=

(ei(x+2πpm/q), ei(y+2πpn/q)).
The quotient T2

B := T2
P/G is the 2-torus constructed by identification of opposite sides of the square [0, 2π/q]2. Indeed,

there are uniquem ∈ Zq and n ∈ Zq such that ei(x+2πpm/q)
= ei(x+2π/q) and ei(y+2πpn/q)

= ei(y+2π/q), so that (m, 0) (resp. (0, n))
identifies (eix, eiy) with (ei(x+2π/q), eiy) (resp. (eix, eiy) with (eix, ei(y+2π/q))) inT2

P/G. The quotientmapT2
P → T2

B is a G-covering.
Let us now consider the C∗-algebra C(T2

P ,Mq(C)) ≃ C(T2
P )⊗Mq(C) ofmatrix-valued continuous functions onT2

P , in which
the space of smooth functions C∞(T2

P ,Mq(C)) is a dense subalgebra. In order to describe this algebra, let us consider the two
matrices

U0 :=

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎠ , V0 :=

⎛⎜⎜⎜⎜⎝
1 0 0 · · · 0
0 ξ1 0 · · · 0
...

. . .
...

0 · · · 0 ξq−2 0
0 0 · · · 0 ξq−1

⎞⎟⎟⎟⎟⎠ with ξn := ei2πnθ ,

which satisfy U0V0 = ei2πθV0U0, U
q
0 = V q

0 = 1q. For (r, s) ∈ Z2
q , the U r

0V
s
0 ’s define a basis of Mq(C) such that tr[U r

0V
s
0] =

q δ(r,s),(0,0) (here tr is the trace onMq(C)). Then a ∈ C∞(T2
P ,Mq(C)) can be decomposed as

a(eix, eiy) =

∑
(r,s)∈Z2

q

ar,s (eix, eiy)U r
0V

s
0 =

∑
(k,ℓ)∈Z2

∑
(r,s)∈Z2

q

ak,ℓ,r,s u(x)kv(x)ℓ U r
0V

s
0 (A.1)

where, with u(x) := eix and v(x) := eiy, the last decomposition is the Fourier series of the smooth functions ar,s on T2
P . In

particular, ak,ℓ,r,s are rapidly decreasing coefficients in terms of (k, ℓ) ∈ Z2.
The group G acts on Mq(C) by

(m, n) · A := U−n
0 Vm

0 AV−m
0 Un

0 .

Let us consider the subalgebra CG(T2
P ,Mq(C)) ⊂ C(T2

P ,Mq(C)) of G-equivariant functions, which by definition satisfy, for any
(m, n) ∈ G,

a(ei(x+2πpm/q), ei(y+2πpn/q)) = Un
0V

−m
0 a(eix, eiy)Vm

0 U−n
0 .

In the form of (A.1), the G-equivariant elements in C∞(T2
P ,Mq(C)) are such that their coefficients satisfy ak,ℓ,r,s ei2π (mk+nℓ)

=

ak,ℓ,r,s ei2π (mr+ns) for any (m, n) ∈ G, (k, ℓ) ∈ Z2 and (r, s) ∈ Z2
q , so that ak,ℓ,r,s ̸= 0 only when mk + nℓ ≡ mr + ns mod q.

With (m, n) = (1, 0) and (0, 1) this implies k ≡ r mod q and ℓ ≡ s mod q. In (A.1), for a couple (k, ℓ) ∈ Z2, there is a
unique (r, s) ∈ Z2

q for which ak,ℓ,r,s ̸= 0 (r and s are the remainders of the Euclidean divisions of k and ℓ by q). Then, the
only non zero coefficients ak,ℓ,r,s depend only on (k, ℓ) ∈ Z2. We denote them by ak,ℓ, and a smooth G-equivariant function
a ∈ C∞

G (T2
P ,Mq(C)) is then given by the expansion

a =

∑
(k,ℓ)∈Z2

ak,ℓ (uU0)k(vV0)ℓ =

∑
(k,ℓ)∈Z2

ak,ℓ UkV ℓ

with U := uU0, V := vV0 satisfying UV = ei2πθVU . Then, the C∗-algebra C(T2
Θ ) for θ = p/q identifies with CG(T2

P ,Mq(C)),
the C∗-completion of C∞

G (T2
P ,Mq(C)) in C(T2

P ,Mq(C)).
The space CG(T2

P ,Mq(C)) identifies in a canonical way with the space Γ (Aθ ) of continuous sections of the associated fiber
bundle Aθ := T2

P×GMq(C) to the G-covering T2
P → T2

B. By definition, Aθ is the quotient of T2
P × Mq(C) by the equivalence

relation ((m, n)·(eix, eiy), A) ∼ ((eix, eiy), (m, n)·A) for any (m, n) ∈ G.We denote by [(eix, eiy), A] ∈ Aθ the class of ((eix, eiy), A).
We denote by S : CG(T2

P ,Mq(C)) → Γ (Aθ ) the identification, defined by S(a)(x, y) := [(eix, eiy), a(eix, eiy)].
In the GNS construction, C∞

G (T2
P ,Mq(C)) is dense in H and is contained in the domains of the δµ’s. The fiber of the vector

bundle V onwhich the differential operator P acts is thenCN
≃ Mq(C), i.e. N = q2. In the present situation, all used elements

in Γ (End(V )) are in fact left multiplications by elements in CG(T2
P ,Mq(C)) ≃ Γ (Aθ ). For instance, the element a in (1.4) will

be understood as the left multiplication by an element a ∈ CG(T2
P ,Mq(C)).
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For A ∈ Mq(C), let L(A) be the left multiplication by A on Mq(C). Then L(A) has the same spectrum as A, each eigenvalues
having q times its original multiplicity. In particular, we have that

tr[L(A)] = q tr[A]

where in the LHS tr is the trace of operators onMq(C) and in the RHS tr is the trace onMq(C).
The computation of R2 uses local trivializations of sections of Aθ . Given a section S(a) ∈ Γ (Aθ ) associated to a ∈

C∞

G (T2
P ,Mq(C)), we define the local section S(a)loc : (0, 2π/q)2 → Mq(C) by S(a)loc(x, y) := a(eix, eiy). Notice that the open

subset (0, 2π/q)2 ⊂ T2
B is sufficient to describe the continuous section S(a) via its trivialization S(a)loc. The (local) sectionR2

relative to ϕ in (1.4) is defined by

ϕ(L(S(a)loc)) =

∫
T2
B

tr[L(S(a)loc(x, y))] dvolg (x, y) = |g|
1/2

∫ 2π/q

0
dx

∫ 2π/q

0
dy q tr[S(a)loc(x, y)].

where we suppose here that |g|
1/2 is constant (this is the case for the situations considered in the paper). Then, one has

S(a)loc(x, y) =

∑
(k,ℓ)∈Z2

ak,ℓ (u(x)U0)k (v(x)V0)ℓ,

hence

ϕ(L(S(a)loc)) = |g|
1/2 q

∑
(k,ℓ)∈Z2

ak,ℓ

∫ 2π/q

0
dx eikx

∫ 2π/q

0
dy eiℓy tr[Uk

0V
ℓ
0 ].

The trace tr[Uk
0V

ℓ
0 ] is non-zero only when k, ℓ are multiples of q, and its value is then q, so that

ϕ(L(S(a)loc)) = |g|
1/2 q2

∑
(k,ℓ)∈Z2

ak,ℓ

∫ 2π/q

0
dx eiqkx

∫ 2π/q

0
dy eiqℓy = |g|

1/2 q2
( 2π

q

)2a0,0 = (2π )2|g|
1/2 t(a). (A.2)

Finally we get (when |g|
1/2 is constant)

ϕ ◦ L ◦ S = (2π )2|g|
1/2 t (A.3)

when applied to any elements in C(T2
Θ ).

Consider now a 4-dimensional noncommutative torus forΘ =

(
θ1χ 0
0 θ2χ

)
, as in (5.4), and θi = pi/qi, pi, qi relatively prime

integers, and qi > 0.
Then C(T4

Θ ) = C(T2
Θ1

) ⊗ C(T2
Θ2

) = Γ (Aθ1 ) ⊗ Γ (Aθ2 ) = Γ (Aθ1 ⊠ Aθ2 ) where Aθ1 ⊠ Aθ2 is the external tensor product
of the two vector bundles Aθi over the base 2-torus T2

B,i defined as above. Recall that, with pri : T2
B,1 × T2

B,2 → T2
B,i the

natural projections, Aθ1 ⊠ Aθ2 :=
(
pr∗1Aθ1

)
⊗

(
pr∗2Aθ2

)
where pr∗i Aθi is the pull-back of Aθi on T2

B,1 × T2
B,2. The fiber of

Aθ1 ⊠ Aθ2 is then Mq1 (C) ⊗ Mq2 (C) ≃ Mq1q2 (C) and the isomorphism Γ (Aθ1 ) ⊗ Γ (Aθ2 )
≃
−→ Γ (Aθ1 ⊠ Aθ2 ) is induced by

(s1 ⊗ s2)(x1, x2) := s1(x1)⊗ s2(x2) for any si ∈ Γ (Aθi ) and xi ∈ T2
B,i. Using the same line of arguments as for the 2-dimensional

case, and denoting by gi a constant metric on T2
B,i, one gets, for any ai ∈ C(T2

Θi
),

ϕ ◦ L(S(a1) ⊗ S(a2)) = |g1|1/2|g2|1/2 (q1q2)2
(

2π
q1

)2(
2π
q2

)2
t (a1 ⊗ a2), (A.4)

so that

ϕ ◦ L ◦ (S ⊗ S) = (2π )4|g1|1/2|g2|1/2 t . (A.5)

This procedure can be extended straightforwardly to any even dimension.

Appendix B. Comparison with previous results for noncommutative tori

We would like to compare the result (5.8) with [8, Theorem 5.2]. Some transformations are in order, since some
conventions are different and the results are presented using different operators. In [8, Theorem 5.2], it is presented relative
to the normalized trace t on C(T2

Θ ), while our result is presented relative to ϕ ◦ L ◦ S = (2π )2 |g|
1/2 twith here |g|

1/2
= τ−1

2 .
If RFK denotes the operator of [8, Theorem 5.2], then

a2(a, P) = t (aRFK ) = ϕ(aR2) = (2π )2τ−1
2 t (aR2), ∀a ∈ C(T2

Θ ),

so we need to show thatR2 =
τ2

(2π )2
RFK (strictly speaking, aR2 should be replaced by L(S(a)R2) in ϕ(aR2), see Appendix A).

Present results are given using functional calculus on the left and right multiplication operators Lu and Ru where u = k2.
The corresponding spectral decompositions give Lu(a) =

∑
r0
r0 Er0a and Ru(a) =

∑
r1
r1 aEr1 , where Eri is the projection
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associated to u for the spectral value ri. In [8], another convention is used, namely via functional calculus on the modular
operator ∆(a) := k−2ak2. If E∆

y denotes the projection of ∆ associated to the spectral value y, then

∆(a) = Lu−1 ◦ Ru(a) =

∑
r0,r1

r−1
0 r1 Er0aEr1 =

∑
r0,y

y Er0aEyr0 =

∑
y

y E∆
y (a)

where y := r−1
0 r1 belongs to the spectrum of ∆.

Thus E∆
y (a) =

∑
r0
Er0aEyr0 and is easy to check that E∆

y0 E
∆
y1 = δy0,y1E

∆
y0 .

The next three lemmas are technical results which permit to transform our relation (5.8) into a relation that will be
compared to [8, Theorem 5.2].

For any b0 ⊗ · · · ⊗ bp ∈ MN (C)⊗
p+1

, we denote by ∆i the operator ∆ which acts on bi, by Lik the left multiplication by k
acting on bi, and by Ri

u the right multiplication by u on bi. Notice that all these operators commute.
The first lemma transforms the functional calculus in the Ri

u’s into a functional calculus in the ∆i’s.

Lemma B.1 (Substitution Lemma). For any function F (r0, r1, . . . , rp) of the eigenvalues ri of the Ri
u’s and any b0 ⊗ · · · ⊗ bp, one

has ∑
r0,r1,...,rp

F (r0, r1, . . . , rp) b0Er0b1Er1 · · · bpErp =

∑
r0,y1,...,yp

f (r0, y1, . . . , yp) b0Er0E
∆
y1 (b1) · · · E

∆
yp (bp)

where f (r0, y1, . . . , yp) := F (r0, r0y1, r0y1y2, . . . , r0y1 · · · yp) is a spectral function of R0
u and the ∆i’s.

Using functional calculus notation, this lemma implies

m ◦ F (R0
u, R

1
u, . . . , R

p
u) = m ◦ f (R0

u,∆1, . . . ,∆p)

as operators acting on elements b0 ⊗ · · · ⊗ bp. This result is very analog to the rearrangement lemma [28, Corollary 3.9]
without the integral

∫
∞

0 du in [28, eq. (3.9)].

Proof. It is sufficient to show how the combinatorial aspect of the proof works for p = 2. One has∑
r0,y1,y2

f (r0, y1, y2) b0Er0E
∆
y1 (b1)E

∆
y2 (b2) =

∑
r0,y1,y2

F (r0, r0y1, r0y1y2) b0Er0E
∆
y1 (b1)E

∆
y2 (b2)

=

∑
r0,y1,y2
z1,z2

F (r0, r0y1, r0y1y2) b0Er0Ez1b1Ey1z1Ez2b2Ey2z2

=

∑
r0,y1,y2

z2

F (r0, r0y1, r0y1y2) b0Er0b1Ey1r0Ez2b2Ey2z2

=

∑
r0,r1,y2

z2

F (r0, r1, r1y2) b0Er0b1Er1Ez2b2Ey2z2

=

∑
r0,r1,y2

F (r0, r1, r1y2) b0Er0b1Er1b2Ey2r1

=

∑
r0,r1,r2

F (r0, r1, r2) b0Er0b1Er1b2Er2 . ■

Let k = eh/2. While the arguments bi mentioned above are δµk or ∆k, they are δµ(ln k) =
1
2δµh and ∆(ln k) =

1
2∆h in [7].

The second lemma gives the relations between these arguments, compare with [8, Lemma 5.1].

Lemma B.2. If g1(y) =

√
y−1
ln y and g2(y1, y2) = 2

√
y1(

√
y2−1) ln y1−(

√
y1−1) ln y2

ln y1 ln y2 (ln y1+ln y2)
, then

δµk = k g1(∆)[δµh] = 2k g1(∆)[δµ ln k],
∆k = k g1(∆)[∆h] − gµνkm ◦ g2(∆1,∆2)[(δµh) ⊗ (δνh)]

= 2k g1(∆)[∆ ln k] − 4gµνkm ◦ g2(∆1,∆2)[(δµ ln k) ⊗ (δν ln k)].

Proof. With g1(y) :=
1
2

∫ 1
0 ds1 ys1/2

= (
√
y − 1)ln−1y, we get

δµk = δµeh/2 =

∫ 1

0
ds1 e(1−s1)h/2 (δµh/2) es1h/2 =

1
2k(

∫ 1

0
ds1 ∆s1/2)[δµh]

= k
∆1/2

− 1
ln∆

[δµh] = 2k
∆1/2

− 1
ln∆

[δµ ln k] = k g1(∆)[δµh] = 2k g1(∆)[δµ ln k].
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Similarly for the Laplacian,

∆k = −gµν(δµδνk) = −
1
2g

µνδµ[

∫ 1

0
ds1e(1−s1)h/2(δνh)es1h/2]

= −
1
2g

µν
[

∫ 1

0
ds1 e(1−s1)h/2(δµδνh)es1h/2 ]

−
1
4g

µν
[

∫ 1

0
ds1

∫ 1−s1

0
ds2 e(1−s1−s2)h/2(δµh)es2h/2(δνh)es1h/2 ]

−
1
4g

µν
[

∫ 1

0
ds1

∫ s1

0
ds2 e(1−s1)h/2(δνh)e(s1−s2)h/2(δµh)es2h/2 ]

= −
1
2g

µνk[
∫ 1

0
ds1 ∆s1/2

](δµδνh)

−
1
4g

µνkm ◦ [

∫ 1

0
ds1

∫ 1−s1

0
ds2 ∆

(s1+s2)/2
1 ∆

s1/2
2 ] [(δµh) ⊗ (δνh)]

−
1
4g

µνkm ◦ [

∫ 1

0
ds1

∫ s1

0
ds2 ∆

s1/2
1 ∆

s2/2
2 ] [(δµh) ⊗ (δνh)]

= k g1(∆)[∆h] − gµνkm ◦ g2(∆1,∆2)[(δµh) ⊗ (δνh)]

with

g2(y1, y2) :=
1
4

∫ 1

0
ds1

∫ 1−s1

0
ds2 y

(s1+s2)/2
1 ys1/2

2 +
1
4

∫ 1

0
ds1

∫ s1

0
ds2 y

s1/2
1 ys2/2

2

= 2
√
y1(

√
y2 − 1) ln y1 − (

√
y1 − 1) ln y2

ln y1 ln y2(ln y1 + ln y2)
. ■

The third lemma gives (technical) functional relations which allow a change of arguments inside our operators. Denote
bym12[b0 ⊗ b1 ⊗ b2] := b0 ⊗ b1b2 the partial multiplication.

Lemma B.3. For any operators like f1(R0
u,∆1), f2(R0

u,∆1,∆2), g1(∆1), and g2(∆1,∆2), one has

m ◦ f1(R0
u,∆1) ◦ L1k ◦ g1(∆1) = m ◦ R0

k ◦ f1(R0
u,∆1) ◦ g1(∆1),

m ◦ f1(R0
u,∆1) ◦ m12 ◦ L1k ◦ g2(∆1,∆2) = m ◦ R0

k ◦ f1(R0
u,∆1∆2) ◦ g2(∆1,∆2),

m ◦ f2(R0
u,∆1,∆2) ◦ L1k ◦ L2k ◦ g2(∆1,∆2) = m ◦ R0

u ◦ ∆
1/2
1 ◦ f2(R0

u,∆1,∆2) ◦ g2(∆1,∆2).

Thus the operators on the LHS are respectively associated, modulo the multiplication operator m, to operators defined by the
spectral functions

√
r0f1(r0, y1)g1(y1),

√
r0f1(r0, y1y2)g2(y1, y2), r0

√
y1f2(r0, y1, y2)g2(y1, y2),

where y1, y2 belong to the spectrum of ∆ and r0 to the spectrum of u.

Proof. For the first relation, we compute the LHS on b0 ⊗ b1 using spectral decomposition:

m ◦ f1(R0
u,∆1) ◦ L1k ◦ g1(∆1)[b0 ⊗ b1] =

∑
r0,r1,
y,y1

f1(r0, y)
√
r1g1(y1) b0Er0E

∆
y [Er1E

∆
y1 (b1)]

=

∑
r0,r1,
y,y1,
z,z1

f1(r0, y)
√
r1g1(y1) b0Er0EzEr1Ez1b1Ey1z1Eyz

the projections products imply r0 = z = r1 = z1 and y1z1 = yz, so this is equal to∑
r0,y,
z

f1(r0, y)
√
r0g1(y) b0Er0Ezb1Eyz =

∑
r0,y,
z

√
r0f1(r0, y)g1(y) b0Er0E

∆
y (b1)

= m ◦ R0
k ◦ f1(R0

u,∆1) ◦ g1(∆1)[b0 ⊗ b1].
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For the second relation, we compute the LHS on b0 ⊗ b1 ⊗ b2:

m ◦ f1(R0
u,∆1) ◦ m12 ◦ L1k ◦ g2(∆1,∆2)[b0 ⊗ b1 ⊗ b2]

=

∑
r0,r1,
y,y1,y2

f1(r0, y)
√
r1g2(y1, y2) b0Er0E

∆
y [Er1E

∆
y1 (b1)E

∆
y2 (b2)]

=

∑
r0,r1,

y,y1,y2,
z,z1,z2

f1(r0, y)
√
r1g2(y1, y2) b0Er0EzEr1Ez1b1Ey1z1Ez2b2Ey2z2Eyz

which implies r0 = z = r1 = z1, y1z1 = z2, and y2z2 = yz, and

=

∑
r0,z1,z2,
y1,y2

f (r0, y1y2)
√
r0g2(y1, y2) b0Er0Ez1b1Ey1z1Ez2b2Ey2z2

=

∑
r0,y1,y2

√
r0f (r0, y1y2)g2(y1, y2) b0Er0E

∆
y1 (b1)E

∆
y2 (b2)

= m ◦ R0
k ◦ f (R0

u,∆1∆2) ◦ g2(∆1,∆2)[b0 ⊗ b1 ⊗ b2].

For the third relation, we compute the LHS on b0 ⊗ b1 ⊗ b2:

m ◦ f (R0
u,∆1,∆2) ◦ L1k ◦ L2k ◦ g2(∆1,∆2)[b0 ⊗ b1 ⊗ b2]

=

∑
r0,r1,r2,

y1,y2,y′1,y′2

f2(r0, y1, y2)
√
r1

√
r2g2(y′

1, y
′

2) b0Er0E
∆
y1 [Er1E

∆
y′1
(b1)]E∆

y2 [Er2E
∆
y′2
(b2)]

=

∑
r0,r1,r2,

y1,y2,y′1,y′2,

z1,z2,z′1,z′2

f2(r0, y1, y2)
√
r1

√
r2g2(y′

1, y
′

2) b0Er0Ez1Er1Ez′1b1Ey′1z′1Ey1z1Ez2Er2Ez′2b2Ey′2z′2Ey2z2

which implies r0 = z1 = r1 = z ′

1, y
′

1z
′

1 = y1z1 = z2 = r2 = z ′

2, and y′

2z
′

2 = y2z2, so that:

=

∑
r0,z1,z2,
y1,y2

f2(r0, y1, y2)
√
r0

√
y1r0g2(y1, y2) b0Er0Ez1b1Ey1z1Ez2b2Ey2z2

=

∑
r0,y1,y2

r0
√
y1f2(r0, y1, y2)g2(y1, y2) b0Er0E

∆
y1 (b1)E

∆
y2 (b2)

= m ◦ R0
u ◦ ∆

1/2
1 ◦ f2(R0

u,∆1,∆2) ◦ g2(∆1,∆2)[b0 ⊗ b1 ⊗ b2]. ■

We can now change (5.8) in order to compare with [8, Theorem 5.2]. As in Lemma B.1, let

f∆k(r0, y1) := F∆k(r0, r0y1), f µν

∂k∂k(r0, y1, y2) := Fµν

∂k∂k(r0, r0y1, r0y1y2).

Using Lemmas B.2 and B.3, one gets

m ◦ F∆k(R0
u, R

1
u) [a ⊗ ∆k] = m ◦ f∆k(R0

u,∆1) [a ⊗ ∆k]

= m ◦ f∆k(R0
u,∆1) ◦ L1k ◦ g1(∆1) [a ⊗ ∆h]

− gµνm ◦ f∆k(R0
u,∆1) ◦ L1k ◦ m12 ◦ g2(∆1,∆2) [a ⊗ (δµh) ⊗ (δνh)]

= m ◦ R0
k ◦ f∆k(R0

u,∆1) ◦ g1(∆1) [a ⊗ ∆h]

− gµνm ◦ R0
k ◦ f∆k(R0

u,∆1) ◦ g2(∆1,∆2) [a ⊗ (δµh) ⊗ (δνh)]

= 2m ◦ R0
k ◦ f∆k(R0

u,∆1) ◦ g1(∆1) [a ⊗ ∆ ln k]

− 4gµνm ◦ R0
k ◦ f∆k(R0

u,∆1∆2) ◦ g2(∆1,∆2) [a ⊗ (δµ ln k) ⊗ (δν ln k)]

and

m ◦ Fµν

∂k∂k(R
0
u, R

1
u, R

2
u) [a ⊗ (δµk) ⊗ (δνk)] = m ◦ f µν

∂k∂k(R
0
u,∆1,∆2) [a ⊗ (δµk) ⊗ (δνk)]

= m ◦ f µν

∂k∂k(R
0
u,∆1,∆2) ◦ L1k ◦ L2k ◦ g1(∆1) ◦ g1(∆2) [a ⊗ (δµh) ⊗ (δνh)]

= m ◦ R0
u ◦ ∆

1/2
1 ◦ f µν

∂k∂k(R
0
u,∆1,∆2) ◦ g1(∆1) ◦ g1(∆2) [a ⊗ (δµh) ⊗ (δνh)]

= 4m ◦ R0
u ◦ ∆

1/2
1 ◦ f µν

∂k∂k(R
0
u,∆1,∆2) ◦ g1(∆1) ◦ g1(∆2) [a ⊗ (δµ ln k) ⊗ (δν ln k)].
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So, the sum gives

m ◦ F∆k(R0
u, R

1
u) [a ⊗ ∆k] + m ◦ Fµν

∂k∂k(R
0
u, R

1
u, R

2
u) [a ⊗ (δµk) ⊗ (δνk)]

= m ◦ G(∆ ln k)(R0
u,∆1) [a ⊗ ∆ ln k] + m ◦ Gµν

(∂ ln k)(∂ ln k)(R
0
u,∆1,∆2) [a ⊗ (δµ ln k) ⊗ (δν ln k)]

with

G(∆ ln k)(R0
u,∆1) := 2R0

k ◦ f∆k(R0
u,∆1) ◦ g1(∆1),

Gµν

(∂ ln k)(∂ ln k)(R
0
u,∆1,∆2) := 4R0

u ◦ ∆
1/2
1 ◦ f µν

∂k∂k(R
0
u,∆1,∆2) ◦ g1(∆1) ◦ g1(∆2)

− 4gµνR0
k ◦ f∆k(R0

u,∆1∆2) ◦ g2(∆1,∆2).

The associated spectral functions are

G(∆ ln k)(r0, y1) = 2
√
r0f∆k(r0, y1)g1(y1),

Gµν

(∂ ln k)(∂ ln k)(r0, y1, y2) = 4r0
√
y1f

µν

∂k∂k(r0, y1, y2)g1(y1)g1(y2) − 4gµν√r0f∆k(r0, y1y2)g2(y1, y2).

Another change of convention concerns the derivations of C∞(T2
Θ ): in [8], δ̂µ := −iδµ is used. This implies that their

expressions like (̂δµ ln k)(̂δν ln k) correspond to our −(δµ ln k)⊗ (δν ln k). Notice also their combination δ̂21 ln k+|τ |
2̂δ22 ln k+

2τ1τ2̂δ1̂δ2 ln k = gµν δ̂µ̂δν ln k = −gµνδµδν ln k = ∆ ln k. Thus for a comparison of the two results, a − sign has to be taken
into account for the Gµν

(∂ ln k)(∂ ln k) term. Finally, [8, Theorem 5.2] is written in terms of functions of ln∆, thus it remains to
make the final change of variables y1 = ex in G(∆ ln k), and y1 = es and y2 = et in Gµν

(∂ ln k)(∂ ln k).
In [8, Theorem 5.2],RFK = −

π
τ2

×[expression in R1,R2,W ]while in (5.8), one has writtenR2 =
1
4π

×[expression in F∆k,

Fµν

∂k∂k]. The proof thatR2 =
τ2

(2π )2
RFK is then equivalent to check that [expression in R1,R2,W ] = −[expression in F∆k, F

µν

∂k∂k].
The previous technical results imply that this is equivalent to show that

R1(x) = −G(∆ ln k)(r0, ex),

R2(s, t) = G11
(∂ ln k)(∂ ln k)(r0, e

s, et ),

|τ |
2R2(s, t) = G22

(∂ ln k)(∂ ln k)(r0, e
s, et ),

τ1R2(s, t) − iτ2W (s, t) = G12
(∂ ln k)(∂ ln k)(r0, e

s, et ),

τ1R2(s, t) + iτ2W (s, t) = G21
(∂ ln k)(∂ ln k)(r0, e

s, et ).

All these relations can be checked directly. In particular, the relations on the RHS are independent of the variable r0.
In order to compare (5.9) for the noncommutative four torus with [11, Theorem 5.4], we can use the results in [14]. As

before, we need the correspondence (A.5) between our trace ϕ and their trace ϕ0 ≡ t. Here gµν

i = δµν on the base tori T2
B,i, so

that |gi|1/2 = 1. Denote by RFK the curvature obtained in [11, Theorem 5.4], which is π2 times [11, eq. (5.1)]. A comparison
between eq. (1) and (3) in [14] and [11, eq. (5.1)] gives

ϕ0(aRFK ) =
1
2ϕ0

(
a
∫
S3

b2(ξ )dΩ
)

=
π2

2 ϕ0
(
a[−δµνk−2 (̂δµ̂δνk2)k−2

+
3
2δ

µνk−2 (̂δµk2)k−2 (̂δνk2)k−2
]
)

=
π2

2(2π )4
ϕ

(
a[δµνk−2(δµδνk2)k−2

−
3
2δ

µνk−2(δµk2)k−2(δνk2)k−2
]
)

= ϕ (aR2) ,

and the two results coincide.2

Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.geomphys.2018.02.014.
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