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a b s t r a c t

In this paper we introduce and study somemathematical structures on top of transitive Lie
algebroids in order to formulate gauge theories in terms of generalized connections and
their curvature:metrics, Hodge star operator and integration along the algebraic part of the
transitive Lie algebroid (its kernel). Explicit action functionals are given in terms of global
objects and in terms of their local description as well. We investigate applications of these
constructions to Atiyah–Lie algebroids and to derivations on a vector bundle. The obtained
gauge theories are discussed with respect to ordinary and to similar noncommutative
gauge theories.

© 2012 Elsevier B.V. All rights reserved.

Usually, gauge theories are mathematically understood within the framework of differential geometry in terms of
connections on principal fibre bundles and covariant derivatives on associated vector bundles. Subsequently, non-
commutative geometry has proposed a more general framework for gauge theories, in terms of associative algebras,
differential calculi, modules and (noncommutative) connections. These (generalized) gauge theories have interesting
features from a physical point of view (see [1] for a recent review), but they often require an investment in some more
involved mathematical structures.

In this paper, we propose another route to construct gauge theories which is grounded on transitive Lie algebroids. The
first advantage of this approach is that the mathematical structures needed to write an action functional is very close to
ordinary geometry, in particular for Atiyah–Lie algebroids. The second benefit is that the natural gauge theories constructed
in this paper will be shown to be of Yang–Mills–Higgs types, exactly as in many examples developed in noncommutative
geometry.

This paper can be considered as a follow up of [2], where some relations between noncommutative connections on a
specific algebra and some generalized notions of connections on transitive Lie algebroids were exhibited. Inspired by [3],
these relations have been used as a guide for the present paper to construct the necessary mathematical structures on top
of transitive Lie algebroids which permit to write gauge invariant action functionals.
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In Section 1, we present some facts about the local descriptions of differential forms on a transitive Lie algebroid A
with kernel L. Our purpose is to establish a correspondence between differential complexes describing global objects on A
and the corresponding differential complexes describing their local counterparts. This step is necessary in order to exhibit
constructions proposed in the sequel, and in order to write an action functional in terms of local objects, as it is customary
in physics.

In Section 2, we study metrics, Hodge star operators and integration on top of transitive Lie algebroids. These
constructions take their roots from two previous constructions which used similar notions of forms and integration: the
first one in the context of the derivation-based noncommutative geometry [3], and the second one in the context of Lie
algebroids [4–6].

Integration on A have been studied in [4,5] for forms on A with values in functions. We generalize part of this work by
defining an integration along the ‘‘fibre’’ (the algebraic or ‘‘inner’’ part of the transitive Lie algebroid) for forms with values
in the kernel L (Definition 2.10). In [4,5], the geometric object which permits to define integration along the fibre is a non-
singular cross-section ε in

n L where n is the dimension of the fibre of the kernel L. The starting point of our definition is
quite different, and it is inspired by similar constructions proposed in [3]: we use right away a notion of metric on L. Then
we associate to such a metric a global form of maximal inner degree (Proposition 2.9). This form plays the role of ‘‘volume
form’’ for the integration along the fibre, and turns out to be dual to ε in a certain sense, as will be explained. On the other
hand, the notion of metric allows us to define a Hodge star operator as well.

The definition and properties of metrics are given in 2.2, and the corresponding notions of integration and of Hodge star
operator are defined in 2.3 and 2.4. The notion of mixed local basis of forms introduced in 1.3 plays an essential role in the
set up of the definitions.

In Section 3, using the mathematical structures introduced in Section 2, we write gauge invariant action functionals of
Yang–Mills–Higgs type. These action functionals are given in terms of global objects on the Lie algebroid, the curvature
of a generalized connection, and also in terms of trivialized forms on open subsets of the base manifold. The fact that the
‘‘Higgs part’’ of the generalized connection vanishes or not makes a clear distinction between pure Yang–Mills theories and
Yang–Mills–Higgs type theories.

In Section 4 we apply the general constructions and results on specific Lie algebroids.
In 4.1, we specify our constructions to Atiyah–Lie algebroids for which the underlying geometry of the principal fibre

bundle helps us to improve some of the results obtained in the general case. For instance, using integration along the
algebraic part, Theorem 4.3 binds the differential on forms on A with values in functions to the de Rham differential on
forms on the base manifold, while Theorem 4.5 relates the de Rham calculus on the principal fibre bundle to the space of
forms with values in the kernel L. Comments are made about the relations between ordinary gauge theories on a principal
fibre bundle and our new gauge theories, as well as about common features and differences with the noncommutative
geometry approach to gauge theories.

In 4.2, we improve some general results for the case of Lie algebroids of derivations on a vector bundle. In that situation,
we extend in (4.4) our notion of integration along the algebraic part, and we make apparent close relations with some
noncommutative structures.

The more concrete physical applications of the gauge theories proposed here are out of the scope of the present paper.
They will be exposed in a forthcoming paper.

1. Local description of differential forms

In this section, we recall some constructions of forms on Lie algebroids as well as their local descriptions.

1.1. Differential forms on transitive Lie algebroids

In this paper we use the notations introduced in [2], and we refer to [7] for more developments on Lie algebroids. Let M
be a smooth manifold. In this paper, C∞(M) stands for complex valued functions on M and Γ (TM) is the space of smooth
vector fields on M.

Definition 1.1. A Lie algebroidA is a finite projectivemodule over C∞(M) equippedwith a Lie bracket [−, −] and a C∞(M)-
linear Lie morphism, the anchor, ρ : A → Γ (TM) such that [X, fY] = f [X, Y] + (ρ(X) · f )Y for any X, Y ∈ A and f ∈

C∞(M), where Γ (TM) is the space of smooth vector fields on M.
A Lie algebroid A

ρ
−→ Γ (TM) is transitive if ρ is surjective.

For a transitive Lie algebroid, the kernel L = ker ρ is a Lie algebroid (with null anchor) on M, and there is a locally trivial
bundle in Lie algebrasL such that L = Γ (L). Such a Lie algebroid defines a short exact sequence of Lie algebras and C∞(M)-
modules

0 //L
ι //A

ρ //Γ (TM) //0 . (1.1)
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The kernel L will often be referred to as the ‘‘inner’’ part of A, and structures defined on L as ‘‘inner’’ objects. This
terminology is inspired by the physical applications we have inmind, whereΓ (TM)will refer to (infinitesimal) symmetries
on space–time (‘‘outer’’ symmetries) and L to (infinitesimal) inner symmetries i.e. infinitesimal gauge symmetries.

There are natural spaces of ‘‘differential forms’’ to be considered on a (transitive or not) Lie algebroid A. They depend on
the choice of a representation of A on a vector bundle. We are interested in two of them.

Definition 1.2. Let A
ρ
−→ Γ (TM) be a Lie algebroid (not necessarily transitive). We define (Ω•(A),dA) as the graded

commutative differential algebra of forms on A with values in C∞(M).

Definition 1.3. Let A
ρ
−→ Γ (TM) be a transitive Lie algebroid, with L its kernel. We define (Ω•(A, L),d) as the graded

differential Lie algebra of forms on A with values in the kernel L, where A is represented on L by the usual adjoint
representation.

We refer to [2] for properties of this differential calculus.
Recall that an ordinary connection on a transitive Lie algebroid A

ρ
−→ Γ (TM) is a splitting ∇ : Γ (TM) → A as C∞(M)-

modules of the short exact sequence

0 //L
ι //A

ρ
//Γ (TM) //

∇

yy
0 (1.2)

Then one can associate to ∇ a 1-form a∇
∈ Ω1(A, L) uniquely defined by

X = ∇X − ι ◦ a∇(X).

This 1-form is normalized by a∇
◦ ι(ℓ) = −ℓ for any ℓ ∈ L. In the following we will call it the connection 1-form of the

ordinary connection ∇ .
Let us collect some of the definitions and notations introduced in [2, Section 4.1]. A trivial Lie algebroid is the Atiyah

transitive Lie algebroid (see Section 4) associated to the trivial principal fibre bundle M × G where G is a Lie group, whose
Lie algebra is denoted by g. The space of smooth sections TLA(M, g) ≡ A = Γ (TM ⊕ (M × g)) is a transitive Lie algebroid
with anchor ρ(X ⊕ γ ) = X , bracket [X ⊕ γ , Y ⊕ η] = [X, Y ] ⊕ (X · η − Y · γ + [γ , η]), and kernel L = Γ (M × g). The
graded commutative differential algebra (Ω•(A),dA) identifies with the total complex of the bigraded commutative algebra
Ω•(M) ⊗


•
g∗ equipped with two differential operators d and s of bidegrees (1, 0) and (0, 1) respectively, where d is the

de Rham differential on Ω•(M), and s is the Chevalley–Eilenberg differential on


•
g∗, so thatdA = d + s. The graded

differential Lie algebra (Ω•
TLA(M, g),dTLA) ≡ (Ω•(A, L),d) identifies with the total complex of the bigraded Lie algebra

Ω•(M)⊗


•
g∗

⊗g equippedwith the differential d and the Chevalley–Eilenberg differential s′ on


•
g∗

⊗g for the adjoint
representation of g on itself, so thatd = d + s′.

1.2. Local trivializations

As explained in detail in [7], a transitive Lie algebroid A
ρ
−→ Γ (TM) with kernel L = Γ (L) can be described locally

as a triple (U, Ψ , ∇0) where Ψ : Γ (U × g)
≃
−→ LU is an isomorphism of Lie algebras and C∞(U)-modules; where ∇

0
:

Γ (TU) → AU is an injective morphism of Lie algebras and C∞(U)-modules compatible with the anchors; and such that
[∇

0
X , ι ◦ Ψ (γ )] = ι ◦ Ψ (X · γ ) for any X ∈ Γ (TU) and any γ ∈ Γ (U × g). Such a triple defines an isomorphism of Lie

algebroids S : TLA(U, g)
≃
−→ AU given by S(X ⊕ γ ) = ∇

0
X + ι ◦ Ψ (γ ).

A Lie algebroid atlas for A is a family of triples {(Ui, Ψi, ∇
0,i)}i∈I such that


i∈I Ui = M and each triple (Ui, Ψi, ∇

0,i) is a
local trivialization of A.

On Uij = Ui ∩ Uj ≠ ∅ one can define αi
j : Uij → Aut(g) with αi

j = Ψ −1
i ◦ Ψj. To any X ∈ A there corresponds a family

{X i
⊕ γ i

∈ TLA(Ui, g)}i∈I such that Si(X i
⊕ γ i) = X|Ui . The local vector fields X i are the restrictions onto Ui of the global

vector field X = ρ(X). There exists ℓij ∈ Ω1(AUij , LUij) such that ∇
0,j
X = ∇

0,i
X + ι ◦ ℓij(X) and Ψi(γ

i) = Ψj(γ
j) + ℓij(X).

Anticipating on some Čech cohomology considerations, we make a distinction between Uij and Uji for i ≠ j, so that one can
define without any ambiguity χij = Ψ −1

i ◦ ℓij ∈ Ω1(Uij)⊗ g. Then one has γ i
= αi

j(γ
j)+χij(X). On Uijk = Ui ∩Uj ∩Uk ≠ ∅,

one has the two cocycle relations αi
k = αi

j ◦ α
j
k and χik = αi

j ◦ χjk + χij. The composite map X ⊕ γ i
→ X ⊕ γ j

→ X ⊕ γ i

on Uij gives αi
j ◦ α

j
i = Id ∈ Aut(g) and αi

j ◦ χji + χij = 0. These expressions are compatible with the previous ones upon
defining αi

i = Id ∈ Aut(g) and χii = 0.
Using a local description of a transitive Lie algebroid, we can locally describe a form using the following definition.

Definition 1.4. Let (U, Ψ , ∇0) be a local trivialization of A. To any q-form ω ∈ Ωq(A, L) we define a local q-form ωloc ∈

Ω
q
TLA(U, g) by

ωloc = Ψ −1
◦ ω ◦ S.
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Given a Lie algebroid atlas for A, one associates toω ∈ Ωq(A, L) a family of local formsωi
loc ∈ Ω

q
TLA(Ui, g). For anyXk ∈ A

with 1 ≤ k ≤ q, let Xk ⊕ γ i
k ∈ TLA(Ui, g) be its family of trivializations. On any Uij = Ui ∩ Uj ≠ ∅ one has

ωi
loc(X1 ⊕ γ i

1, . . . , Xq ⊕ γ i
q) = αi

j ◦ ω
j
loc(X1 ⊕ γ

j
1, . . . , Xq ⊕ γ j

q).

sji = S−1
j ◦ Si : TLA(Uij, g)

≃
−→ TLA(Uij, g) is an isomorphism of (trivial) Lie algebroids and the previous relation takes the

compact form

ωi
loc = αi

j ◦ ω
j
loc ◦ sji. (1.3)

Let us defineα i
j : Ω

q
TLA(Uij, g) → Ω

q
TLA(Uij, g) by

α i
j (ω

j
loc) = αi

j ◦ ω
j
loc ◦ sji. (1.4)

Proposition 1.5. A family of local forms {ωi
loc}i∈I with ωi

loc ∈ Ω•
TLA(Ui, g) is a system of trivializations of a global form ω ∈ Ω•

(A, L) if and only if

α i
j (ω

j
loc) = ωi

loc (1.5)

for any i, j such that Uij ≠ ∅.
For any ω ∈ Ω•(A, L), one hasdTLAωloc = Ψ −1

◦ (dω) ◦ S and, on Uij ≠ ∅,dTLAωi
loc =α i

j

dTLAω
j
loc


.

The mapα i
j : Ω•

TLA(Uij, g) → Ω•
TLA(Uij, g) is an isomorphism of graded differential Lie algebras.

Proof. (1.5) is a direct consequence of the definition of the mapα i
j .dTLAωloc = Ψ −1

◦ (dω) ◦ S anddTLAωi
loc =α i

j

dTLAω
j
loc


are straightforward computations using the definitions and the

properties ofd,dTLA, Ψ , ∇0 and S. For the second relation, one needs the easy to establish relation

X · αi
j(η) + [γ i, αi

j(η)] = αi
j(X · η + [γ j, η])

for any η ∈ Γ (Uij × g). �

We shall use the same notationα i
j : Ω•

TLA(Uij) → Ω•
TLA(Uij) for the isomorphism defined byα i

j (ω
j
loc) = ω

j
loc ◦ sji, which

permits to perform changes of trivializations for local expressions of forms in Ω•(A). Local descriptions of forms in Ω•(A)
were presented in [4].

1.3. Mixed local basis of forms

Let {θ a
}1≤a≤n be the dual basis of the basis {Ea}1≤a≤n of g. Let (U, Ψ , ∇0) be a local trivialization of A. Let∇ be an ordinary

connection on A. Then its connection 1-form a has a local expression aloc = (Aa
− θ a)Ea (summation over a is understood),

where A ∈ Ω1(U) ⊗ g is defined by aloc(X ⊕ γ ) = A(X) − γ . Let us introduce the notation

aa = Aa
− θ a

∈ Ω1
TLA(U).

Definition 1.6. The local 1-forms aa on U are called the mixed basis on the inner part of Ω1
TLA(U) relative to the ordinary

connection ∇ and to the basis {Ea}1≤a≤n of g.

Let ω ∈ Ωp(A, L) and denote by ωloc ∈ Ω
p
TLA(U, g) its trivialization over U . Then one has

ωloc =


r+s=p

ωθ
µ1...µr a1...asdx

µ1 ∧ · · · ∧ dxµr ∧ θ a1 ∧ · · · ∧ θ as

with ωθ
µ1...µr a1...as : U → g. Using θ a

= Aa
− aa, this expression can be written as

ωloc =


r+s=p

ωµ1...µr a1...asdx
µ1 ∧ · · · ∧ dxµr ∧ aa1 ∧ · · · ∧ aas (1.6)

for some new components ωµ1...µr a1...as : U → g which are polynomials in the Aa
µ’s for A

a
= Aa

µdx
µ.

Proposition 1.7. Define the matrix valued functions Gi
j =


Gi
j
b
a


1≤a,b≤n on Uij ≠ ∅ by αi

j(Ea) = Gi
j
b
a
Eb (summation over b). With

obvious notations, on Uij one has

aai = Gi
j
a
b
abj ◦ sji

where sji = S−1
j ◦ Si : TLA(Uij, g)

≃
−→ TLA(Uij, g).
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Proof. This is a direct consequence of (1.3). �

This relation can also be written as

α j
i (a

a
i ) = Gi

j
a
b
abj (1.7)

whereα j
i is the one defined on forms in Ω•

TLA(Uij).
On Uij ≠ ∅, we can decomposeωi

loc along the aai ’s andω
j
loc along the aaj ’s. Using (1.7),α i

j (ω
j
loc) = ωi

loc,α i
j (ω

j
µ1...µr a1...as) =

αi
j(ω

j
µ1...µr a1...as) andα i

j (dx
µ) = dxµ, one gets

ωi
µ1...µr a1...as = Gj

i
b1
a1

· · ·Gj
i
bs
as
αi
j(ω

j
µ1...µr b1...bs

). (1.8)

These homogeneous gluing relations motivates the decomposition of global forms on A along the aa instead of the θ a’s.

2. Metrics and integration

In this section, we define a notion of metrics on transitive Lie algebroids and a notion of integration along the ‘‘inner
structure’’ L.

2.1. Inner metrics

Because L is an ordinary vector bundle, the notion of metric on L is well defined. In the following, a metric h on L will
be referred to as an ‘‘inner metric’’ on L. Such an inner metric is a C∞(M)-linear map h : L ⊗C∞(M) L → C∞(M).

In a local trivialization (U, Ψ , ∇0) of A, h is trivialized as a local map hloc ∈ C∞(U) ⊗
2

g∗ defined by hloc(γ , η) =

h(Ψ (γ ), Ψ (η)) for any γ , η ∈ Γ (U × g), where


•
g∗ is the symmetric algebra over g∗. Let {Ea}1≤a≤n be a fixed basis of g.

Then one can introduce the local components of h over U as hab = hloc(Ea, Eb).
We can extend the inner metric h to a C∞(M)-linear map

h : Ωp(A, L) ⊗C∞(M) Ωq(A, L) → Ωp+q(A)

by

h(ω, η)(X1, . . . , Xp+q) =
1

p!q!


σ∈Sp+q

(−1)sign(σ )h(ω(Xσ(1), . . . , Xσ(p)), η(Xσ(p+1), . . . , Xσ(p+q)))

for any ω ∈ Ωp(A, L) and η ∈ Ωq(A, L). For p = q = 0, this is the original map h. Notice that h(ω, η) = (−1)pqh(η, ω) and
h(ηω1, ω2) = ηh(ω1, ω2) for any ω1, ω2 ∈ Ω•(A, L) and η ∈ Ω•(A).

Definition 2.1. A Killing inner metric is an inner metric h such that

h([ξ, γ ], η) + h(γ , [ξ, η]) = 0

for any γ , η, ξ ∈ L.
A locally constant inner metric is an inner metric h such that the local components hab of h are constant functions in any

local trivializations of A.

Lemma 2.2. Let h be a Killing metric on L, then

h([η, ω1], ω2) + (−1)qp1h(ω1, [η, ω2]) = 0

for any η ∈ Ωq(A, L), ω1 ∈ Ωp1(A, L) and ω2 ∈ Ωp2(A, L).
Let h be a locally constant Killing inner metric on L. Then one hasdAh(ω, η) = h(dω, η) + (−1)ph(ω,dη)

for any ω ∈ Ωp(A, L) and any η ∈ Ωq(A, L).

Proof. These relations can be established in any local trivialization of A. �



C. Fournel et al. / Journal of Geometry and Physics 64 (2013) 174–191 179

2.2. Metrics

Definition 2.3. Let A be a Lie algebroid over the manifold M. A metric on A is a symmetric, C∞(M)-linear mapg : A ⊗C∞(M) A → C∞(M).

We do not suppose for the moment thatg is non-degenerate. This point will be discussed down below. This definition
does not require A to be transitive, although we will only consider the transitive case in the following.

Proposition 2.4. Let A
ρ
−→ Γ (TM) be a transitive Lie algebroid with kernel L.

A metricg on A defines an inner metric h = ι∗g on L. Explicitly one has

h(γ , η) =g(ι(γ ), ι(η))

for any γ , η ∈ L. h will be called the inner part of g.
Let g be an ordinary metric on the manifold M. Theng = ρ∗g is a metric on A:g(X, Y) = g(ρ(X), ρ(Y))

for any X, Y ∈ A.
Let h be an inner metric on L, and let ∇ be an ordinary connection on A. Denote by a ∈ Ω1(A, L) its associated connection 1-

form. Then the pair (h, ∇) defines a metricg = a∗h on A byg(X, Y) = h(a(X), a(Y)).

This metric satisfies h = ι∗g.
Proof. These claims are just direct applications of the definitions and the properties of the objects involved in the
relations. �

The metricg = ρ∗g vanishes on ι(L) and the metricg = a∗h vanishes on the image of ∇ in A. In the following we will
introduce a kind of notion of non degeneracy in order to get rid of such metrics.

Definition 2.5. A metricg on A is inner non degenerate if its inner metric h = ι∗g is non degenerate on L, i.e. if it is non
degenerate as a metric on L.

The constructions given in Proposition 2.4 help us to decompose any metric on A into ‘‘smaller’’ entities.

Proposition 2.6. Letg be an inner non degenerate metric on A. Then there exists a unique connection ∇
g on A such that, for any

X ∈ Γ (TM) and any γ ∈ L,

g(∇g
X , ι(γ )) = 0. (2.1)

Proof. By a straightforward adaptation of the theorem of Riesz, the non degeneracy of h implies that for any C∞(M)-linear
map ϖ : L → C∞(M) there exists a unique a ∈ L such that h(a, γ ) = ϖ(γ ) for any γ ∈ L.

For any X ∈ A, applying this result to ϖ(γ ) = −g(X, ι(γ )), there exists a unique ag(X) ∈ L such that h(ag(X), γ ) =

−g(X, ι(γ )). By uniqueness, the map X → ag(X) ∈ L is C∞(M)-linear and one has ag(ι(η)) = −η for any η ∈ L, so that
ag is a normalized 1-form on A with values in L. This implies that there exists a unique connection ∇

g
: Γ (TM) → A with

∇
g
X = X + ι ◦ ag(X) for any X ∈ A with X = ρ(X).
By construction, one hasg(∇g

X , ι(γ )) = 0 for any X ∈ Γ (TM) and any γ ∈ L. �

Proposition 2.7. An inner non degenerate metric g on A is equivalent to a triple (g, h, ∇) where g is a (possibly degenerate)
metric on M, h is a non degenerate inner metric on L and ∇ is an ordinary connection on A. The metricg and the triple (g, h, ∇)
are related by:g(X, Y) = g(ρ(X), ρ(Y)) + h(a(X), a(Y)) (2.2)

where a is the connection 1-form associated to ∇ .

Proof. It is obvious that such a triple defines an inner non degenerate metricg by the proposed relation.
In the opposite direction, Proposition 2.6 defines a unique connection ∇ associated tog satisfying (2.1). Using X =

∇X − ι ◦ a(X) with X = ρ(X) and a the connection 1-form associated to ∇ , one hasg(X, Y) =g(∇X , ∇Y ) −g(ι ◦ a(X), ∇Y ) −g(∇X , ι ◦ a(Y)) +g(ι ◦ a(X), ι ◦ a(Y)).

The two terms in the middle vanish by construction of ∇ . Define now

g(X, Y ) =g(∇X , ∇Y ), h(γ , η) =g(ι(γ ), ι(η)).

The triple (g, h, ∇) satisfies the requirements. Notice that the inner metric h in this construction is exactly h = ι∗g . �
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Let (g, h, ∇) be a triple as in Proposition 2.7. Let (U, Ψ , ∇0) be a local trivialization of A. Denote by aa ∈ Ω1
TLA(U) the

mixed basis relative to ∇ and {Ea}1≤a≤n. Let us assume that U is the support of a chart of M, with coordinates (xµ). Locally,
we can write (2.2) asgloc = gµνdxµdxν

+ haba
aab

where gµν are the local components of themetric g . Thus, this mixed basis diagonalizes by blocks the local expression of the
metricg .
2.3. Inner orientation and integration

Let as before {Ea}1≤a≤n denote a basis of the n-dimensional Lie algebra g and {θ a
}1≤a≤n its dual basis. Let h be an inner

metric on L.
Let Gi

j =

Gi
j
b
a


1≤a,b≤n be defined as in Proposition 1.7. The vector bundle L is orientable if and only if det(Gi

j) > 0 for any
i, j such that Uij ≠ ∅. L is said to be orientable if L is orientable.

Definition 2.8. A transitive Lie algebroid is inner orientable if its kernel is orientable.

This notion of ‘‘inner orientable Lie algebroid’’ is the same as the notion of ‘‘vertically orientable Lie algebroid’’ used in [5].
On Ui, denote by γi = γ a

i Ea the local expression of an element γ ∈ L. On Uij ≠ ∅, the relation γi = αi
j(γj) induces the

relation γ a
i = Gi

j
a
b
γ b
j . For any γ , η ∈ L, one has hj

loc(γj, ηj) = hi
loc(γi, ηi) = hi

loc(α
i
j(γj), α

i
j(γj)), so that

hj
b1b2

= Gi
j
a1
b1
Gi
j
a2
b2
hi
a1a2 . (2.3)

Proposition 2.9. On each Ui, let |hi
loc| denotes the absolute value of the determinant of the matrix (hi

loc). If L is orientable then
on Uij ≠ ∅ one has

α j
i


|hi

loc| a1i ∧ · · · ∧ ani


=


|hj

loc| a1j ∧ · · · ∧ anj .

This implies that there exists a global form ωh,a ∈ Ω•(A) of maximal inner degree n defined locally by

ωh,a = (−1)n


|hloc| a1 ∧ · · · ∧ an.

The form ωh,a ∈ Ω•(A) plays the role of a ‘‘volume form’’ for fibre integration.

Proof. On one hand, we have

α j
i


a1i ∧ · · · ∧ ani


= Gi

j
1
b1

· · ·Gi
j
n
bn

a
b1
j ∧ · · · ∧ a

bn
j

=


bi

εb1···bnGi
j
1
b1

· · ·Gi
j
n
bn

a1j ∧ · · · ∧ anj

= det(Gi
j) a1j ∧ · · · ∧ anj

where εb1···bn is the totally antisymmetric Levi-Civita symbol.
On the other hand, a straightforward computation gives

det(hj
loc) = det(Gi

j)
2 det(hi

loc) (2.4)

so that |hi
loc| = | det(Gi

j)|
−2

|hj
loc| as a density.

Since det(Gi
j) > 0, one hasα j

i


|hi

loc| a1i ∧ · · · ∧ ani


=


|hj

loc| a1j ∧ · · · ∧ anj . �

According to (1.6), any form ω ∈ Ω•(A, L) of maximal degree n in the inner direction can be written locally on Ui as

ωi
loc = (−1)nωm.i.

loc i


|hi

loc| a1i ∧ · · · ∧ ani + ωR
= ωm.i.

loc i ωh,a + ωR

where ωR contains only terms of lower degrees in the aai ’s, with ωm.i.
loc i ∈ Ω•(Ui) ⊗ g (‘‘m.i.’’ stands for ‘‘maximum inner’’).

Notice that the factor ωm.i.
loc i is the factor of


|hi

loc| θ1
∧ · · · ∧ θn in ωi

loc, and ωR is a sum of terms with degree in the θ a’s less
or equal to n − 1.
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Two such local expressions can be compared on intersecting trivializations. Applyingα j
i onωi

loc and using Proposition 2.9,
one gets

α
j
i(ω

m.i.
loc i) = ωm.i.

loc j

so that the forms ωm.i.
loc i define a global form ωm.i.

∈ Ω•−n(M, L), the space of (de Rham) forms on M with values in the
vector bundle in Lie algebras L.

Definition 2.10. On an inner orientable transitive Lie algebroid equipped with a metric, one defines the inner integration
as the operation

inner
: Ω•(A, L) → Ω•−n(M, L) ω → ωm.i..

This inner integration is zero when applied to forms which do not contain terms of maximal inner degree n.

Because the form ωm.i. defined to be the result of this inner integration is in fact the factor of


|hi
loc| θ1

∧ · · · ∧ θn, this
integration does not depend on the choice of the connection but only on the inner metric h.

The same construction yields an inner integration for C∞(M)-valued forms through
inner

: Ω•(A) → Ω•−n(M).

Notice that by construction

inner ωh,a = 1 where ωh,a ∈ Ω•(A) is the volume form defined in Proposition 2.9.

The global form ωh,a plays a dual role to the non-singular cross section ε ∈
n L used in [5] to define integration along

the fibre on Ω•(A). Given a non degenerate inner metric h on L, one can define

εloc = (−1)n


|hloc|
−1

E1 ∧ · · · ∧ En (2.5)
in any local trivialization (U, Ψ , ∇0) of A. These local expressions define a global form ε ∈ Γ (

n
L) =

n L which satisfies
iεωh,a = 1 where the operation iε on Ω•(A) is defined as in [5] and corresponds there to the integral along the fibre on
Ω•(A). This relates our constructions to the ones proposed by Kubarski. The present notion of inner integration is also a
direct generalization for transitive Lie algebroids of the notion of ‘‘noncommutative’’ integration defined and studied in [3]
(see also [8] for constructions related to the present situation).

In order to define a global integration on forms, we suppose from now on that the manifold M is orientable.

Definition 2.11. A transitive Lie algebroid is orientable if it is inner orientable and if its base manifold is orientable.

Then we can define as follows.

Definition 2.12. The integration on an orientable transitive Lie algebroid equipped with a metric is the composition of the
inner integration on Ω•(A) with the integration of forms on the base manifold. For any ω ∈ Ω•(A), this integration is
denoted by

A

ω =


M


inner

ω ∈ C.

Obviously, this definition makes sense only when the integral on M converges, which is always the case when M is
compact or for compactly supported (relative to M) forms on A.

This definition is the same as the one given inDefinition 2.1 in [5]. The present definition only considers forms inΩ•(A). It
can be extended toΩ•(A, L) in the case of the transitive Lie algebroid of derivations of a vector bundle using the ‘‘extended’’
inner integration

 tr
inner which will be defined in (4.4).

This integral is non zero only if its contains a non zero term which is of maximal degree in both the inner direction and
the spatial direction. In that particular case, the integral depends only on this term. This integration has several properties
which have been described in [5].

Definition 2.13. Let A be an orientable transitive Lie algebroid equipped with a metric. For any ω ∈ Ω•(A) and η ∈ Ω•

(A), one defines their scalar product as

⟨ω, η⟩ =


A

ω η ∈ C.

Definition 2.14. Let A be an orientable transitive Lie algebroid equipped with a metric. For any ω ∈ Ω•(A, L) and η ∈ Ω•

(A, L), one defines their scalar product as

⟨ω, η⟩ =


A

h(ω, η) ∈ C.
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2.4. Hodge star operator

In the following, we suppose that A is an orientable transitive Lie algebroid equipped with an inner non-degenerate
metricg = (g, h, ∇) such that g is also a non-degenerate metric on M.

Let ω ∈ Ωp(A, L) be written locally in a trivialization (U, Ψ , ∇0) of A as in (1.6), where the aa’s are chosen to be the
components of the local expression of the connection 1-form associated to ∇ .

Consider the form in Ω
m+n−p
TLA (U, g) defined by

⋆ ωloc =


r+s=p

(−1)s(m−r) 1
r!s!


|hloc|


|g| ωµ1...µr a1...as ϵν1...νm ϵb1...bn

× gµ1ν1 · · · gµr νr ha1b1 · · · hasbs dxνr+1 ∧ · · · ∧ dxνm ∧ abs+1 ∧ · · · ∧ abn (2.6)

where ϵν1...νm and ϵb1...bn are the totally antisymmetric Levi-Civita symbols, and where (gµν) and (hab) are the inverse
matrices of (gµν) and (hab) respectively.

Using (1.7), (1.8), (2.3), (2.4) one can establish thatα i
j (⋆ω

j
loc) = ⋆ωi

loc so that, by Proposition 1.5, ⋆ω ∈ Ωm+n−p(A, L) is
well-defined.

Definition 2.15. Themap ⋆ : Ωp(A, L) → Ωm+n−p(A, L) is theHodge star operator on the orientable transitive Lie algebroid
A associated to the metricg .
Proposition 2.16. For any ω ∈ Ωp(A, L) one has

⋆ ⋆ ω = (−1)(m+n−p)pω.

Proof. This is just direct a computation using the definition of ⋆ and some combinatorial properties of the Levi-Civita
symbols. �

This Hodge star operator defines a natural scalar product on any Ωp(A, L) by

(ω, η) = ⟨ω, ⋆η⟩

for any ω, η ∈ Ωp(A, L) where ⟨−, −⟩ is defined in Definition 2.14.

Proposition 2.17. For any ω, η ∈ Ωp(A, L) written in a trivialization of A as in (1.6) one has

(ω, η) = (−1)n


M


r+s=p

(−1)s(m−r) (m − r)! (n − s)!ωa
µ1...µr a1...as ηµ1...µr a1...as

a


|g|dx1 ∧ · · · ∧ dxm

with

ηµ1...µr a1...as
a = gµ1ν1 · · · gµr νr ha1b1 · · · hasbshab ηb

ν1...νr b1...bs .

Proof. This is just a combinatorial straightforward computation. �

Notice that the Hodge star operator ⋆ is also well defined on Ω•(A) where it permits to introduce a scalar product
(ω, η) = ⟨ω, ⋆η⟩ using Definition 2.13. A similar relation as the one given in the previous proposition can be established.

The Hodge star operator defined locally by (2.6) can be defined by the same relation on any differential calculusΩ•(A, E)
where E is a representation of the Lie algebroid A (see Definition 3.1 in [2]). This will be used in 3.3.

3. Gauge theories

In this section we formulate gauge theories on transitive Lie algebroids. We use the notion of connections introduced
in [2], as well as its associated notion of infinitesimal gauge action of L.

Here we use the terminology ‘‘connection on A’’ for the notion of ‘‘generalized connection on A’’ introduced in [2,
Definition 3.18]. We will refer to ‘‘ordinary connections’’ to mention connections which are splitting of the short exact
sequence (1.2).

In the following, any mention of gauge invariance under an infinitesimal gauge transformation ξ ∈ L means vanishing
of the term in ξ (but not necessarily of terms of higher orders in ξ ).
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3.1. Decomposition of a connection 1-form and its curvature

Definition 3.1. Let ω ∈ Ω1(A, L) be a connection on A. We define the reduced kernel endomorphism τ ∈ End(L) ≃

L ⊗C∞(M) L∗ associated toω by

τ = ω ◦ ι + IdL. (3.1)

The following facts are direct consequences of this definition, and of Proposition 3.9 and Definition 3.19 in [2].

Lemma 3.2. τ vanishes if and only if ω is an ordinary connection.
The infinitesimal action of L on τ is given by τ ξ

= τ + [τ , ξ ] for any ξ ∈ L.

One can look at the reduced kernel endomorphism as an obstruction forω to be an ordinary connection, so that, in some
forthcoming developments, assuming τ = 0 will mean that we consider an ordinary connection.

Definition 3.3. We denote by Rτ : L × L → L the obstruction for τ ∈ End(L) to be a endomorphism of Lie algebras:

Rτ (γ , η) = [τ(γ ), τ (η)] − τ([γ , η]) (3.2)

for any γ , η ∈ L. Rτ is called the algebraic curvature of τ .

Let us introduce a fixed reference ordinary connection on A, defined by a normalized 1-form ω̊ ∈ Ω1(A, L) (i.e. ω̊ ◦ ι =

−IdL). ω̊ will be called a background connection on A.

Theorem 3.4. Let ω̊ be a background connection on A. For any connection ω ∈ Ω1(A, L) with associated reduced kernel endo-
morphism τ ,

ω = ω + τ(ω̊) (3.3)

is an ordinary connection on A. The induced infinitesimal gauge action of L is the one on ordinary connections.

ω will be called the ordinary connection induced byω relatively to ω̊. Notice that whenω is an ordinary connection, one
has τ = 0, so thatω = ω. The background connection ω̊ is only relevant for connectionswhich are not ordinary connections.

Proof. These are straightforward computations. �

In a local trivialization (U, Ψ , ∇0) of A, one writes ωloc = A − θ + τloc, ω̊loc = Å − θ and ωloc = A − θ , for τloc ∈

C∞(U) ⊗ End(g) andA, Å, A ∈ Ω1(U) ⊗ g. They are related by the relation A =A + τloc(Å).
An ordinary connection on A is a map ∇ : Γ (TM) → A. For any connectionω on A, we introduce the generalization of

this map as follows.

Proposition 3.5. Let Θ : A → A be defined, for any X ∈ A, byΘ(X) = X + ι ◦ω(X). (3.4)

Then Θ is a C∞(M)-linear map on A, the curvatureR ∈ Ω2(A, L) of ω is given by

ι ◦R(X, Y) = [Θ(X),Θ(Y)] − Θ([X, Y]) (3.5)

and the infinitesimal gauge action of L on Θ is given by Θξ
= Θ + [Θ, ξ ].ω ∈ Ω1(A, L) is an ordinary connection if and only if Θ ◦ ι = 0.

Proof. The first part of the proposition is just straightforward computations.
Letω be an ordinary connection, and let ∇ be its connection as in (1.2). Then by definition ι ◦ω(X) = ∇ρ(X) − X, so thatΘ = ∇ ◦ ρ.
Conversely, if Θ ◦ ι = 0, then, for any γ ∈ L, one has 0 = Θ(ι(γ )) = ι(γ ) + ι ◦ω(ι(γ )), so thatω(ι(γ )) = −γ , which

implies thatω is an ordinary connection on A. �

Notice that whenω is an ordinary connection on A, one has Θ2
= Θ , and Θ is the projection onto the image of ∇ in A.

Letω be a connection on A, ω̊ be a background connection on A, andω be the ordinary connection induced byω relatively
to ω̊. Denote by Θ, Θ̊, Θ : A → A the maps associated toω, ω̊ and ω respectively, and denote by ∇̊, ∇ : Γ (TM) → A the
connections as in (1.2) associated to ω̊ and ω respectively. Then one hasΘ(X) = Θ(X) + ι ◦ τ(X − Θ̊(X))

= ∇ ◦ ρ(X) + ι ◦ τ(X − ∇̊ ◦ ρ(X)).

In the first expression, we identify τ with its induced map ι(L) → L.
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We denote by R̊, R ∈ Ω2(M, L) the curvature 2-forms of the ordinary connections ω̊ and ω. DefineF = R − τ ◦ R̊ ∈

Ω2(M, L). Notice that ρ∗F ∈ Ω2(A, L).
For any X ∈ Γ (TM) and γ ∈ L define

(DXτ)(γ ) = [∇X , τ (γ )] − τ([∇̊X , γ ]),

then DXτ ∈ End(L) and we can look at Dτ as an element in Ω1(M, End(L)). A straightforward computation shows that
DXDY τ − DYDXτ − D[X,Y ]τ = [R(X, Y ), τ ] − τ([R̊(X, Y ), IdL]) for any X, Y ∈ Γ (TM).

Denote by ρ∗Dτ ∈ Ω1(A, End(L)) its pull-back, given explicitly by

(ρ∗Dτ)(γ ) = [∇ ◦ ρ, τ(γ )] − τ([∇̊ ◦ ρ, γ ])

and notice that ((ρ∗Dτ) ◦ ω̊)(X, Y) = (Dρ(X)τ)(ω̊(Y)) − (Dρ(Y)τ)(ω̊(X)) defines an element in Ω2(A, L).
Finally, one has ω̊∗Rτ ∈ Ω2(A, L). Given all these notations, a straightforward computation shows the following.

Proposition 3.6. The curvatureR ∈ Ω2(A, L) of ω can be written asR = ρ∗F − (ρ∗Dτ) ◦ ω̊ + ω̊∗Rτ . (3.6)

Under an infinitesimal gauge transformation, each of the 3 terms of this decomposition of R have homogeneous trans-
formations.

Whenω is an ordinary connection, one has τ = 0, so thatF = R, and thenR = R as expected by the previouslymentioned
fact thatω = ω.

3.2. Gauge invariant functional

We suppose now that A is an orientable transitive Lie algebroid equipped with a non degenerate and inner non-
degenerate metricg = (g, h, ∇̊) such that g is also a non-degenerate metric on M and h is a Killing inner metric on L.

Proposition 3.7. For any connectionω ∈ Ω1(A, L) with curvature 2-formR, we define the action functional:

SGauge[ω] =


A

h(R, ⋆R). (3.7)

Then S[ω] is invariant under infinitesimal gauge transformations in L.

Denote by dvol =
√

|g| dx1 ∧ . . . ∧ dxm, where |g| is the determinant of g , the volume form on M. Then define the
Lagrangian density LGauge[ω] by

LGauge[ω] dvol =


inner

h(R, ⋆R) ∈ Ωm(M).

Then the action functional is given by

SGauge[ω] =


M

LGauge[ω] dvol.

Proof. An infinitesimal gauge transformation ξ ∈ L induces the transformationR →Rξ
=R + [ξ,R] on the curvature. At

first order in ξ , one gets:

LGauge[ωξ
] dvol =


inner

h(Rξ , ⋆Rξ ) =


inner

h(R + [ξ,R], ⋆R + ⋆[ξ,R])
=


inner

h(R, ⋆R) +


inner

h([ξ,R], ⋆R) + h(R, ⋆[ξ,R])
= LGauge[ω] dvol

where we use Lemma 2.2 in the last step. �

As a background connection, we choose ω̊ to be the connection 1-form associated to the connection ∇̊ in the tripleg = (g, h, ∇̊). We denote by ω the ordinary connection induced byω relatively to ω̊.
In a local trivialization (U, Ψ , ∇0) of A, one has

(DXτ)loc(γ ) = (X · τloc)(γ ) + [A(X), τloc(γ )] − τloc([Å(X), γ ])

for any X ∈ Γ (TU) and γ ∈ C∞(U) ⊗ g.
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Let us introduce the following notations:

Rloc = F a
µνEadx

µ
∧ dxν R̊loc = F̊ a

µνEadx
µ

∧ dxν

(Rτ )loc(Ea, Eb) = W c
abEc τloc(Ea) = τ b

a Eb

F a
µν and F̊ a

µν are the ordinary field strengths of the connections A and Å respectively, and F a
µν = F a

µν − τ a
b F̊

b
µν . A direct

computation shows that

W c
ab = τ d

a τ e
bC

c
de − Cd

abτ
c
d

where the C c
ab’s are the structure constants of g in the basis {Ea}1≤a≤n.

With (D∂µτ)loc(Ea) = (Dτ)bµ,aEb, one has

(Dτ)bµ,a = ∂µτ b
a + Ac

µτ d
a C

b
cd − Åd

µC
c
daτ

b
c .

With these notations, using Proposition 2.17, the Lagrangian density can be written as

LGauge[A, τ ] =
λ1

4
gµ1µ2gν1ν2ha1a2

F a1
µ1ν1

F a2
µ2ν2

+
λ2

2
gµ1µ2ha1a2hb1b2(Dτ)b1µ1,a1(Dτ)b2µ2,a2 +

λ3

4
ha1a2hb1b2hc1c2W

c1
a1b1

W c2
a2b2

(3.8)

where λ1, λ2, λ3 are combinatorial coefficients: λ1 = (−1)n(m − 2)! n!, λ2 = (−1)n(−1)m−1(m − 1)! (n − 1)! and
λ3 = (−1)nm! (n − 2)!.

3.3. Minimal coupling to matter fields

As explained in [2], a connection defines a covariant derivative on the space of sections Γ (E) of a vector bundle E → M
which supports a representation φ : A → D(E) of A.

Using similar notations as in [2], we denote by ϕ → ϕξ
= ϕ − φL(ξ)ϕ an infinitesimal gauge transformation performed

on ϕ ∈ Γ (E) by ξ ∈ L.

Proposition 3.8. Let ω ∈ Ω1(A, L) be a connection on A. For any ϕ ∈ Γ (E), the map ϕ → ∇Eϕ = φ(Θ)ϕ defines a covariant
derivative ∇E

: Γ (E) → Ω1(A, E) which can be decomposed, using (3.3), as

∇Eϕ = ρ∗φ(∇) · ϕ − (φL(τ )ϕ) ◦ ω̊. (3.9)

Under infinitesimal gauge transformations, each term has homogeneous transformations.

This covariant derivative is the minimal coupling of the connectionω with matter fields in Γ (E).

Proof. Using the ordinary connection ω, one has X = ∇ρ(X) − ι ◦ ω(X), so that φ(X) = ρ∗φ(∇) − φL ◦ ω(X). Inserting this
relation in ∇E

Xϕ = φ(X)ϕ + φL ◦ω(X)ϕ, and using (3.3), one gets the decomposition.
Under an infinitesimal gauge transformation of ξ ∈ L, τ transforms homogeneously, so that, under an infinitesimal gauge

transformation: (φL(τ )ϕ)◦ω̊ → (φL(τ )ϕ)◦ω̊+([φL(τ ), φL(ξ)]ϕ)◦ω̊−(φL(τ )φL(ξ)ϕ)◦ω̊ = (φL(τ )ϕ)◦ω̊−φL(ξ)(φL(τ )ϕ)◦ω̊
at first order in ξ .

ρ∗φ(∇) · ϕ is just the ordinary covariant derivative ∇
Eϕ induced by ω on E , so that it transforms homogeneously under

a gauge transformation. �

Definition 3.9. An metric hE on the vector bundle E is φL-compatible if

hE (φL(ξ)ϕ1, ϕ2) + hE (ϕ1, φL(ξ)ϕ2) = 0

for any ϕ1, ϕ2 ∈ Γ (E) and any ξ ∈ L.

This definition generalizes the notion of Killing inner metric which corresponds to the particular case with E = L and
the adjoint representation of A on L.

Proposition 3.10. Let hE be a φL-compatible metric on E . Then, for any ϕ1, ϕ2 ∈ Γ (E), hE (ϕ1, ϕ2) is invariant under infinite-
simal gauge transformations.

Proof. This is a straightforward computation. �
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Using the natural Hodge star operator defined on Ω•(A, E) (see remark at the end of Section 2.4), we can define the
action functional

SMatter[ϕ,ω] =


A

hE (∇Eϕ, ⋆∇Eϕ).

This action functional is gauge invariant under infinitesimal gauge transformations in L.
In a local trivialization of A, this action functional can be written as

SMatter[ϕ,ω] = (−1)n


M

(m − 1)!n! hE (∇E
µϕ,∇E µϕ) + (n − 1)!m! hE (∇E

a ϕ,∇E aϕ) (3.10)

where∇E
µ = ∂µ + Aa

µφL(Ea) ∇E
a = −τ b

a φL(Eb).

The first term in this functional action represents the square of the covariant derivative ofϕ along the ordinary connection
ω. The second term represents a quadratic coupling of ϕ with the fields τ b

a .

3.4. Comments of these gauge theories

Using the decompositions (3.6) and (3.9), one gets the following structure for the total action functional S[ϕ,ω] =

SGauge[ω] + SMatter[ϕ,ω] constructed in (3.7).

S[ϕ,ω] = ⟨ρ∗F , ⋆ρ∗F⟩ (3.11a)

+ ⟨(ρ∗Dτ) ◦ ω̊, ⋆(ρ∗Dτ) ◦ ω̊⟩ (3.11b)
+ ⟨Rτ ◦ ω̊, ⋆Rτ ◦ ω̊⟩ (3.11c)

+ ⟨ρ∗φ(∇) · ϕ, ⋆ρ∗φ(∇) · ϕ⟩ (3.11d)
+ ⟨(φL(τ )ϕ) ◦ ω̊, ⋆(φL(τ )ϕ) ◦ ω̊⟩. (3.11e)

These terms are written locally in (3.8) and (3.10).
The gauge theories obtained in (3.11) are of Yang–Mills–Higgs type. Indeed, the fields in the ordinary connection ω are

Yang–Mills fields, and the τ ’s fields behave as Higgs fields, in the following way. The term (3.11c) vanishes when τ is a Lie
algebra morphism, which can occur for instance when τ = IdL. Then, reporting this solution into (3.11b) induces a mass
term for the A’s fields. In a similar way, (3.11e) induces a mass term for the matter fields ϕ.

As a consequence, the gauge theorieswehave constructed heremanifest one of the greatest strengths of noncommutative
geometry, which is to produce a large class of natural Yang–Mills–Higgs type theories (see [1] for a recent review). This
feature is a direct consequence of the short exact sequence (1.1) which corresponds, in noncommutative geometry, to the
short exact sequence of groups 1 // Inn(A) //Aut(A) //Out(A) //1 associated to any associative algebra A, where
Aut(A) is the group of automorphisms of A, Inn(A) is its normal subgroup of inner automorphisms, and Out(A) is the
quotient group of outer automorphisms. The infinitesimal version of this short exact sequence of groups, which involves
the corresponding Lie algebras of derivations (see for instance [2, Eq. (4.10)]), was the key ingredient to show in [2]
that connections in noncommutative geometry and connections on transitive Lie algebroids are related in some specific
situations.

The precise study of the physical content of the present gauge theories is out of the scope of this paper. This will be
elaborated in a forthcoming paper.

4. Applications to specific Lie algebroids

4.1. Atiyah–Lie algebroids

Let G be a connected Lie group, and let g be its Lie algebra. Let P
π
−→ M be a G-principal bundle over M. The (transitive)

Atiyah–Lie algebroid of P is defined by the short exact sequence

0 //ΓG(P , g)
ι //ΓG(TP )

π∗ //Γ (TM) //0

where

ΓG(TP ) = {X ∈ Γ (TP )/Rg ∗X = X for all g ∈ G}

ΓG(P , g) = {v : P → g/v(p · g) = Adg−1v(p) for all g ∈ G}.

HereRg(p) = p · g denotes the right action of G on P and ι is given by ι(v)(p) =
 d
dt p · e−tv(p)


|t=0.
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In order to get compact notations, we denote by (Ω•

Lie(P , g),d) the space of forms on this Lie algebroid ΓG(TP ) with
values in its kernel ΓG(P , g) and by (Ω•

Lie(P ),dLie) the space of forms with values in C∞(M).
The local description of the Lie algebroid ΓG(TP ) is obtained using local trivializations of the principal fibre bundle P .

Here we complete the exposition given in [2] in order to make apparent some relations used in forthcoming computations.
Let {(Ui, ϕi)} be a system of trivializations of P where ϕi : P|Ui

≃
−→ Ui × G, and denote by si : Ui → P , with si(x) =

ϕ−1
i (x, e), the associated local sections. One has sj(x) = si(x)gij(x) on any Uij ≠ ∅ where gij : Uij → G are the associated

transition functions. The isomorphism Ψi : Γ (Ui × g)
≃
−→ ΓG(P|Ui , g) is given by Ψ −1

i (v) = s∗i v for any v ∈ ΓG(P , g). With
p = si(x) · g , one has Ψi(η

i)(p) = Adg−1ηi(x) for any ηi
∈ Γ (Ui × g) and one has ∇

0,i
X |p = Tsi(x)RgTxsiX|x ∈ TpP . Any

X ∈ ΓG(TP ) is trivialized over Ui as X ⊕ γ i where X = π∗(X) and γ i
: Ui → g represents the vertical part of X on P . More

concretely, one has X = ∇
0,i
X −γ iP

∈ ΓG(TP ) withγ i(p) = Ψi(γ
i)(p) = Adg−1γ i(x) andγ iP

= −ι(γ i).
On Uij ≠ ∅, a straightforward computation shows that

γ i
= gijγ jg−1

ij + gijdg−1
ij (X), (4.1)

which gives

αi
j(γ ) = gijγ g−1

ij χij(X) = gijdg−1
ij (X). (4.2)

Wewill use the following result obtained in [2]. The space gequ = {ξP
⊕ξ/ξ ∈ g} is a sub Lie algebra of TLA(P , g), where

ξP
∈ Γ (TP ) is the fundamental vector field associated to ξ ∈ g for the right action ofG onP . gequ defines a Cartan operation

on the differential complex (Ω•
TLA(P , g),dTLA). Denote by (Ω•

TLA(P , g)gequ ,
dTLA) the differential graded subcomplex of basic

elements.

Proposition 4.1 ([2]). Let G be a connected and simply connected Lie group. Then (Ω•

Lie(P , g),d) and (Ω•
TLA(P , g)gequ ,

dTLA)
are isomorphic as differential graded complexes. The same is true for gequ-basic forms in Ω•

TLA(P ) and Ω•

Lie(P ).

From now on we suppose that G is connected and simply connected, so that the identifications of Proposition 4.1 apply.
We associate to a form ω ∈ Ω•

Lie(P , g) its family of local forms {ωi
loc}i∈I with ωi

loc ∈ Ω•
TLA(Ui, g) satisfying (1.5). Letω ∈ Ω•

TLA(P , g)gequ be the gequ-basic form corresponding to ω ∈ Ω•

Lie(P , g) in the identification of Proposition 4.1.

Lemma 4.2. One has ωi
loc = s∗iω ∈ Ω•

TLA(Ui, g).

Proof. Let us first recall some key features of the identification of the differential calculus (Ω•

Lie(P , g),d) with (Ω•
TLA

(P , g)gequ ,
dTLA). In [2] a short exact sequence of Lie algebras and C∞(M)-modules

0 //Z //N
ρP //ΓG(TP ) //0

is used where Z is defined to be the C∞(P )-module generated by gequ and N = ΓG(TP ) ⊕ Z ⊂ TLA(P , g). It is shown
that N generates the space TLA(P , g) as a C∞(P )-module. The isomorphism λ : Ω•

TLA(P , g)gequ → Ω•

Lie(P , g) is explicitly
defined as follows. For anyω ∈ Ω r

TLA(P , g)gequ , for any X1, . . . ,Xr ∈ ΓG(TP ), denote byX1, . . . ,Xr ∈ N any family such
that ρP (Xi) = Xi, then the map p → λ(ω)(X1, . . . ,Xr)(p) = ω(X1, . . . ,Xr)(p) ∈ g is a G-equivariant map.

In order to simplify the exposition, we prove the lemma for 1-forms. The algebraic machinery is the same for p-forms.
For any X ∈ ΓG(TP ) and any x ∈ Ui, by definition one has

ωi
loc(X ⊕ γ i)(x) = Ψ −1

i (ω(X))(x) = ω(X)(si(x)) = ωsi(x)(
X|si(x))

for anyX ∈ N such that ρP (X) = X. On P|Ui , let us takeX = ∇
0,i
X −γ iP

+ (γ iP
⊕γ i) = ∇

0,i
X ⊕γ i whereγ iP

⊕γ i
∈ Z [2].

ThenX|si(x) = (si ∗X)|x ⊕ γ i(x) by construction of ∇0,i
X andγ i. This gives ωi

loc(X ⊕ γ i) = (s∗iω)(X ⊕ γ i). �

We can summarize the identifications between these differential calculi in the following diagram:

Trivial Lie
Algebroids

Ω•

Lie(P , g)
� �

inclusion
//

trivialization

&&LLLLLLLLLLLLLLLLL
Ω•

TLA(P , g)gequ

{s∗i }

��

λ

uu
Global description


i∈I Ω

•
TLA(Ui, g) Local description

From now on, we suppose that g is semi-simple, so that its Killing form k is non degenerate.
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On a trivialization of ΓG(TP ) associated to a trivialization (Ui, ϕi) of P , we define hi
loc(γ , η) = k(γ , η) for any γ , η :

Ui → g. Then, using the invariance of k under the adjoint action of G on g, we get that the hi
loc’s define a global metric h on

L (see (2.3) and (4.2)).
Let us introduce a fixed connection ∇ on the Lie algebroid ΓG(TP ), i.e. an ordinary connection on the principal fibre

bundle P . The mixed basis on any trivialization of ΓG(TP ) will be defined relative to this connection.
G being connected, the vector bundle L = P ×Ad g is orientable, so that ΓG(TP ) is inner orientable.

Theorem 4.3. Suppose that the inner metric h is such that
√

|hloc| is locally constant in any local trivialization of ΓG(TP ), and
that the Lie algebra g is unimodular. Then for any ω ∈ Ω•

Lie(P ) one has
inner

dLieω = d

inner

ω.

A Lie algebra is unimodular in our sense if the trace of its adjoint action vanishes. When the group is finite dimensional
and connected, this definition of unimodularity is equivalent to the one defined on G using Haar measures [9]. There are
well-known sufficient conditions for a group to be unimodular: compact, abelian, connected reductive or nilpotent etc.

This theorem is similar to Theorem 1.2 in [5] or Theorem 5.2.2 in [4]. A key condition required in these theorems is that
the cross-section ε ∈

n L which defines the integral along the fibre be invariant oriented, which means that it is invariant
under the

n ad representation of A on
n L. Using the definition of ε given by (2.5) in our context, this is equivalent to

both |hloc| being locally constant and the Lie algebra being unimodular. In the following proof, we will only use these two
conditions.

For instance, the inner metric h defined above by the Killing metric k is such that
√

|hloc| is locally constant in any local
trivialization of ΓG(TP ).

Proof. Denote by s the Chevalley–Eilenberg differential on


•
g∗, which satisfies sθ c

= −
1
2C

c
abθ

a
∧ θ b. Then one has

s(θ a1 ∧ · · · ∧ θ an−1) = (−1)ntr(Can) θ a1 ∧ · · · ∧ θ an (4.3)

where Can is the matrix (Cb
ana)a,b and an is the missing index in the fixed multi-index (a1, . . . , an−1) with ak ≠ aℓ for k ≠ ℓ.

Using this result, let us now collect the factor of
√

|hloc| a1 ∧ · · · ∧ an in (d + s)ωloc when one uses the decomposition

ωloc = (−1)nωm.i.
loc


|hloc| a1 ∧ · · · ∧ an + ωR

with ωm.i.
loc ∈ Ω•(U) and ωR containing only terms of degrees <n in the aa’s.

d
√

|hloc|a
1
∧· · ·∧an and dωR do not contribute because

√
|hloc| is locally constant and the degrees do notmatch for other

terms. When g is unimodular, (4.3) implies that s
√

|hloc|a
1
∧ · · · ∧ an and sωR do not contribute. The remaining term is then

dωm.i.
loc , which is globally d


inner ω. �

From now on, we suppose that G is connected, simply connected, semi-simple, unimodular and of dimension n. In other
words, G is the connected and simply connected group associated to a semi-simple unimodular n-dimensional Lie algebra
g. As before, k is the Killing metric on g.

Lemma 4.4. The gequ-basic form in Ω•
TLA(P ) corresponding to the volume form ωh,a ∈ Ω•(A) is

ωk,∇ = (−1)n


|k| (ω1
∇

− θ1) ∧ · · · ∧ (ωn
∇

− θn)

where ω∇ = ωa
∇

⊗ Ea ∈ Ω•(P ) ⊗ g is the (ordinary) connection 1-form on P associated to ∇ .

Proof. Notice that the proof of Lemma 4.2 applies to basic forms in Ω•
TLA(P ) which are trivialized as local forms in

Ω•
TLA(Ui) = Ω•(Ui)⊗


•
g∗ via the pull-back s∗i . Using the unimodular property of g, a straightforward computation shows

that the proposed expression forωk,∇ is gequ-basic.

Now, ωh,a is locally defined on Ui as (−1)n


|hi
loc| a1i ∧ · · · ∧ ani where hi

loc = k and aai = Aa
i − θ a

∈ Ω1
TLA(Ui). Notice

finally that Ai = Aa
i ⊗ Ea is the local expression of ω∇ given explicitly by Ai = s∗i ω∇ . �

For any ω = ωdR ⊗ ωalg. ⊗ ξ ∈ Ω•(P ) ⊗


•
g∗

⊗ g = Ω•
TLA(P , g), we now define a natural map


alg. Ω

•
TLA(P , g) →

Ω•−n(P ) ⊗ g by
alg.

ω =

ωdR ⊗ ξ if ω = ωdR ⊗


|k| θ1
∧ · · · ∧ θn

⊗ ξ

0 if ωalg. ∉

n
g∗.
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Theorem 4.5. The following diagram is commutative

Ω•

Lie(P , g)
� � //


inner

��

Ω•
TLA(P , g)


alg.

��
Ω•−n(M, L)

� � // Ω•−n(P ) ⊗ g

In this diagram, Ω•(M, L) is identified with the space of tensorial forms in Ω•(P ) ⊗ g [10].

Proof. The first point to check is that

alg. maps gequ-basic forms inΩ•

TLA(P , g) to tensorial forms inΩ•−n(P )⊗g. Because G
is connected and simply connected, a form


aωa

dR⊗ξa ∈ Ω•(P )⊗g is tensorial if and only if


a(LξPωa
dR)⊗ξa+


aωa

dR⊗

[ξ, ξa] = 0 and


a(iξPωa
dR) ⊗ ξa = 0 for any ξ ∈ g.

A formω =


aωa
dR ⊗

√
|k| θ1

∧ · · · ∧ θn
⊗ ξa is basic if and only if for any ξ ∈ g one has

a

(LξPωa
dR) ⊗


|k| θ1

∧ · · · ∧ θn
⊗ ξa +


a

ωa
dR ⊗ (Lg

ξ


|k| θ1

∧ · · · ∧ θn) ⊗ ξa

+


a

ωa
dR ⊗


|k| θ1

∧ · · · ∧ θn
⊗ [ξ, ξa] = 0

and 
a

(iξPωa
dR) ⊗


|k| θ1

∧ · · · ∧ θn
⊗ ξa +


a

(−1)|ωa
dR|ωa

dR ⊗ (iξ


|k| θ1
∧ · · · ∧ θn) ⊗ ξa = 0.

Because g is unimodular, one has Lg

ξ

√
|k| θ1

∧ · · · ∧ θn
= 0, so that


alg.ω =


aωa

dR ⊗ ξa is invariant. Looking at each
bidegrees for the horizontality condition onω, one gets


a(iξPωa

dR)⊗
√

|k| θ1
∧· · ·∧θn

⊗ξa = 0 so that

alg.ω is horizontal.

The second point to check is that

alg. coincides on gequ-basic forms with


inner. In order to do that, we consider these

integrations on a trivialization of P given by a local section s : U → P . Then one has the following diagram:

Ω•
TLA(P , g)gequ


alg.

��

s∗ // Ω•
TLA(U, g)


inner

��
(Ω•−n(P ) ⊗ g)tensorial

s∗ // Ω•−n(U) ⊗ g

The map s∗ (see for instance [10]) in the bottom row is the same as the map s∗ in the top row. For any basic form ω =
a(−1)n

√
|k| ωa

dR(ω
1
∇

−θ1)∧· · ·∧(ωn
∇

−θn)⊗ξ a
∈ Ω•

TLA(P , g)gequ one has s
∗ω =


a(−1)n

√
|k| (s∗ωa

dR) a1∧· · ·∧an⊗ξ a

because of Lemma 4.4, so that

inner s

∗ω =


a(s
∗ωa

dR) ⊗ ξ a. On the other hand, one has

alg.ω =


aωa

dR ⊗ ξ a so that
s∗

alg.ω =


a(s

∗ωa
dR) ⊗ ξ a.

This proves the coincidence of the two integrals, because

inner on Ω•

Lie(P , g) is completely determined by

inner on the

trivializations of forms in Ω•
TLA(U, g). �

Using Proposition 2.7, one can define an inner non degeneratemetricg onΓG(TP ) as a triple (g, h, ∇)where h and∇ are
defined as above and g is an ordinary metric on the base manifold M. Then the properties of this triple are exactly the ones
defining a metric for a non-abelian Kaluza–Klein theory on P [11]. Notice that the geometrical point of view is generally
adopted in these theories (geodesics and trajectories of particle) while our point of view here is the one from field theories.

Denote by G(P ) the gauge group of P , of vertical automorphisms of P . In the following we represent an element
u ∈ G(P ) as a G-equivariant map u : P → G, u(p · g) = g−1u(p)g . It is well known that L is the Lie algebra of G(P ).

Let ω ∈ Ω1
Lie(P , g). For any u ∈ G(P ), let us introduce ωu(X) = u−1ω(X)u + u−1(X · u) for any X ∈ ΓG(TP ). Using the

G-equivariance of ω(X) and u, it is straightforward to verify that ωu(X) ∈ ΓG(P , g), so that ωu
∈ Ω1

Lie(P , g).
The map ω → ωu is the action of G(P ) on connections on ΓG(TP ). This action reduces to the infinitesimal action of

L = ΓG(P , g) defined in [2] and used in Section 3.
Let E = P ×ℓ F be an associated vector bundle for a vector space F supporting a representation ℓ ofG. Thenφ(X)ϕ = X·ϕ

is a representation of ΓG(TP ) where we look at sections of E as G-equivariant maps ϕ : P → F such that ϕ(p · g) =

ℓ(g−1)ϕ(p). The covariant derivative ∇E associated to a connection ω on ΓG(TP ) is given by ∇E
Xϕ = X · ϕ + ℓ(ω(X))ϕ

where ℓ designates also the induced representation of g on F . The gauge group G(P ) acts on Γ (E) by ϕ → ℓ(u−1)ϕ. The
covariant derivative associated to ωu is ∇E u

X ϕ = ℓ(u−1)∇E
Xℓ(u)ϕ, which is the usual expression of a gauge transformation

on a covariant derivative.
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To any u ∈ G(P ) we can associate the two 1-forms u−1du = u∗θ ∈ Ω1(P ) ⊗ g and u−1su = Adu−1θ − θ ∈ g∗
⊗ g, so

that u−1dTLAu = u−1du + u−1su ∈ Ω1
TLA(P , g) makes sense.

Letω ∈ Ω1
TLA(P , g) be the gequ-basic 1-form corresponding toω ∈ Ω1

Lie(P , g). Then the gauge transformation onω takes
the formωu

= u−1ωu+ u−1dTLAu. To verify thatωu is gequ-basic requires to take into account all the G-equivariances of the
various objects in this relation.

The Killing metric k on g defines a locally constant Killing inner metric h on L. Using a metric on M and a background
connection ω̊ on P , one can write an action functional for connections on ΓG(TP ). This action functional reduces to the
ordinary Yang–Mills action functional on ordinary connections, as it is easy to see by imposing τ = 0. In the same way, the
functional action of matter fields reduces to the usual action functional of minimal coupling with Yang–Mills potentials.

This means that the gauge theories proposed in Section 3, when specified on Atiyah–Lie algebroids, are generalizations
of the Yang–Mills gauge theories used in physics. We have noticed in 3.4 that these theories are of the Yang–Mills–Higgs
types, and the similitude of this approach with the one proposed in noncommutative geometry has already been noticed.
But there are two main differences we would like to highlight.

The first one is that in the present approach, the ‘‘generalized’’ gauge theories constructed here contains the ordinary
gauge theories, so that we can consider the latter as special cases in a larger class of theories. In particular, the Atiyah–Lie
algebroid framework gets in close contact with the ordinary geometry of fibre bundles and their connections, which are at
the heart of present day gauge theories.

The second point is more technical. One of the problems encountered in the noncommutative approach is the fact that
the gauge group is extracted from some algebraic structures, for instance as automorphisms of an associative algebra. Here,
every (usual) gauge group can be promoted into these new gauge theories, because these gauge groups are related to some
principal fibre bundle, which in turn gives rise to an Atiyah–Lie algebroid.

4.2. Derivations on a vector bundle

Let E be a rank p complex vector bundle over the manifold M. Using any hermitian structure on E , we suppose that its
structure group H is contained in U(p), the group of complex unitary p × pmatrices. Denote by End(E) = E ⊗ E∗ the fibre
bundle of endomorphisms of E where E∗ is the dual vector bundle associated to E . Denote byA(E) = Γ (End(E)) the algebra
of endomorphisms of E .

Let D(E) be the space of first order operators on Γ (E) whose symbol is the identity. Then

0 //A(E)
ι //D(E)

σ //Γ (TM) //0
is the transitive Lie algebroid of derivations of E where σ is the symbol map [12].

Denote by (Ω•

Lie(E,A(E)),d) the graded differential algebra of forms on this transitive Lie algebroid with values in its
kernel, and denote by (Ω•

Lie(E),dLie) the graded commutative differential algebra of forms on D(E) with values in C∞(M).
The natural inclusion C∞(M) → A(E) induces a morphism of graded differential algebras Ω•

Lie(E) ↩→ Ω•

Lie(E,A(E)).
Let {Ui, φi}i∈I be a system of trivializations of E associated to a good cover {Ui}i∈I of M, where φi : Ui × Cp

→ E|Ui are
linear isomorphisms. Then this systemof trivializations induces a natural systemof trivializations of End(E), {Ui,φi}i∈I , such
thatφi : Ui × Mp(C) → End(E)|Ui andφi(x, γ ) · φi(x, v) = φi(x, γ · v) for any γ ∈ Mp(C) and any v ∈ Cp. Any s ∈ Γ (E)

(resp. a ∈ A(E)) is then trivialized by a family of maps si : Ui → Cp (resp. ai : Ui → Mp(C)). A first order operator X ∈ D(E)

is trivialized as a family of elements Xi ⊕ γ i
∈ Γ (TUi) ⊕ Γ (Ui × Mp(C)) through the relation

(X · s)(x) = φi

x, (Xi · si)(x) + γ i(x) · si(x)


for any x ∈ Ui where · means either the action of a vector field on vector valued functions or the action of matrices on
vectors. Notice that Xi = Xj = X = σ(X) on Uij ≠ ∅ and γ i

= hijγ
jh−1

ij + hijdh−1
ij (X) where hij : Uij → H ⊂ U(p) are the

transition functions of E such that si(x) = hij(x)sj(x) for any x ∈ Uij. The system of trivializations considered for D(E) is thus
defined by ∇

0,i
X = X and Ψi(ai) = ai for any ai : Ui → Mp(C), and one has αi

j(γ ) = hijγ h−1
ij and χij(X) = hijdh−1

ij (X). The
local description of Ω•

Lie(E,A(E)) is given by the differential calculi Ω•(Ui) ⊗


• M∗
p ⊗ Mp.

The Lie algebra on which this Lie algebroid is modelled is g = Mp(C) = Mp with the commutator as Lie bracket and
n = p2. This Lie algebra decomposes as g = C1p ⊕ sln where 1p is the unit matrix inMp and slp is the Lie algebra of traceless

matrices inMp. In any trivialization, one can decompose X ⊕ γ i
= TLA(Ui,Mp) as X ⊕


1
pλ

i1p ⊕ γ i
0


where λi

= tr(γ i) and

γ i
0 = γ i

−
1
pλ

i1p : Ui → slp. Then the family X ⊕ λi associated to a family Xi ⊕ γ i of trivializations of an element X ∈ D(E)

defines a global element in the transitive Lie algebroid

0 //C∞(M)
ι //D(det(E))

σ //Γ (TM) //0

where det(E) =
p

E is the determinant line bundle associated to E . This map is the natural representation of D(E) on
det(E) given by X →

p
X where

p
X


(e1 ∧ · · · ∧ ep) =

p
k=1

e1 ∧ · · · ∧ X(ek) ∧ · · · ∧ ep.
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The induced map A(E) → C∞(M) is the globally defined trace tr, which is a Lie morphism. This representation gives rise
to a natural morphism of graded commutative differential algebras Ω•

Lie(det(E)) → Ω•

Lie(E).
The inner orientability of D(E) corresponds to the orientability of the (vector) bundle End(E). Because U(p) is

unimodular, End(E) is always orientable. The trace map given before defines a non degenerate inner metric h on A(E)
given by h(a, b) = tr(ab). In any local trivialization, the inner metric h is represented by a constant matrix. Notice that the
unimodularity of the (real) Lie algebra up of U(p) implies the unimodularity of the (complex) Lie algebra g = Mp.

The inner integration

inner : Ω•

Lie(E,A(E)) → Ω•−n(M, End(E)) defined by the inner metric h can be composed with
the trace map in order to define tr

inner
= tr ◦


inner

: Ω•

Lie(E,A(E)) → Ω•−n(M). (4.4)

Proposition 4.6. For any ω ∈ Ω•

Lie(E,A(E)) one has tr

inner

dω = d
 tr

inner
ω.

In some extent, this proposition generalizes the result obtained in Theorem 4.3 for forms which are not C∞(M)-valued.
In doing so, it completes the first row of Theorem 4.5 using the trace in order to end in the space of forms on M.

Proof. The differentiald is locally the sum of three parts on Ω•(Ui)⊗


• M∗
p ⊗Mp: the de Rham differential on Ω•(Ui), the

Chevalley–Eilenberg differential on


• M∗
p and the adjoint action on Mp. Using similar arguments as the ones used in the

proof of Theorem 4.3 and the fact that the trace kills the adjoint action onMp, one gets the result. �

Let Der(A(E)) be the Lie algebra and C∞(M)-module of derivations of the associative algebra A(E). In [13], a natural
surjection D(E) → Der(A(E)) was proposed: it associates to any X ∈ D(E) the derivation a → [X, a] for any a ∈ A(E)
where the commutator takes place in the space of operators on Γ (E). Locally this corresponds to X ⊕ γ → X ⊕ adγ .

Now, if the structure group H of E can be reduced such that H ⊂ SU(p), then there is a natural injection Der(A(E)) →

D(E) of Lie algebroids defined locally by X ⊕ adγ i → X ⊕ γ i for any traceless γ i
: Ui → slp. One then has a splitting of

Lie algebroids D(E) ≃ Der(A(E)) ⊕ C∞(M). The inclusion of Der(A(E)) into D(E) induces a natural morphism of graded
differential algebras Ω•

Lie(E,A(E)) → Ω•

Der(A(E)) where Ω•

Der(A(E)) is the derivation based differential calculus associated
to A(E) (see [8,2] for details). This morphism connects together the integration

 tr
inner defined in (4.4) and the equivalent

integration defined in [3] on the noncommutative geometry of the algebra A(E).
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