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Born-Infeld inspired bosonic action in a noncommutative geometry
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I. INTRODUCTION

In this article we propose to extend the non-Abelian
generalization of Born-Infeld [1] Lagrangian proposed in
[2] to the noncommutative geometry of matrix-valued
functions on a manifold [3,4]. It was shown that such
realization of gauge principle contains not only the usual
SU(n) gauge field, but also a generalization of Higgs
multiplet of scalar fields. The matrix realization of non-
commutative geometry provides also a framework in
which the calculus of a determinant can be naturally
generalized.

It should be stressed that the action proposed in this
paper provides a natural generalization of the so-called
Dirac-Born-Infeld action [1,5] (see [6] and references
therein) for non-Abelian gauge theories. Such a general-
ization was also proposed by Tseytlin [7] via dimensional
reduction of pure non-Abelian Born-Infeld action com-
puted with symmetric trace prescription. Our approach
here is similar but we propose to use noncommutative
geometry of matrices instead of dimensional reduction
and to use a determinant in the tensor product [2] instead
of the symmetric trace prescription. Our Lagrangian is
closed to the one proposed by Park [8], but, as shown in
our previous paper [2], the main difference being the use
of Hermitian generators of the Lie algebra and introduc-
tion of an additional quasicomplex structure.

Other non-Abelian Born-Infeld Lagrangians with sca-
lar fields were proposed in the context of study of classical
solutions [9–11] by simple addition of the usual
Lagrangian for Higgs fields to a standard Born-Infeld
Lagrangian.

Our interest is focused on the pure noncommutative
scalar sector. We show that solitonlike solutions with
finite energy can not be obtained with pure Higgs fields
obeying this version of generalized Born-Infeld dynam-
ics, in the case when the Higgs multiplet reduces to a
single scalar ’. Such an ansatz is natural if spherical
symmetry is imposed (further studies are in progress in
order to treat correctly the spherical symmetry in the
framework of matrix noncommutative geometry).

Next, we consider a time-dependent scalar field and its
dynamics. The equations of motion are highly nonlinear,
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and there is little hope to get genuine analytic solutions.
Nevertheless we can say quite a lot about the qualitative
behavior of solutions by exploring the phase space and
spotting all singular points and curves. As it could be
expected in a Born-Infeld-like theory, the nondivergent
trajectories in the phase space ’; u � _’ are confined
within certain limits, as a natural consequence of the
existence of maximal field strength. This feature of the
theory makes it particularly interesting for cosmological
models with nonstandard scalar fields as driving force for
accelerated inflation.

II. GAUGE FIELDS IN NON-COMMUTATIVE
GEOMETRY

We shall generalize here the ‘‘noncommutative
Maxwell theory’’ developed in [4] which will be used
as a framework for a Born-Infeld inspired Lagrangian.
Let us first recall the basis assumptions of the noncom-
mutative geometry in a particular matrix realization
which will be used here. We consider the algebra A �
C1�V� �Mn�C� with the vector fields spanned by the
derivations of C1�V� and inner derivations of Mn�C�.
The differential algebra is generated by the basis of linear
one-forms acting on the derivations. We can consider A
as a bimodule over itself. Then one fixes the gauge choos-
ing a unitary element e of A, satisfying h�e; e� � 1, with
h a Hermitian structure on A. Then any element of A
can be written in the form em with m 2 A, and a
connection on A can be defined as a map:

r:A ! �1�A�; em � �re�m	 edm:

In the gauge e, a connection can be completely charac-
terized by an element ! of �1�A�:

re � e!:

One can also decompose ! in vertical and horizontal
parts

! � !h 	!v with !h � A; !v � �	�:

Here A is an analog of the Yang-Mills connection,
whereas � is the canonical one-form of the matrix algebra
and plays the role of preferred origin in the affine space of
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vertical connections. It satisfies the equation

d�	 � ^ � � 0:

Then � is a tensorial form and can be identified with
scalar field multiplet.

One can choose a local basis of derivations of A:
fe�; eag, where for convenience e� are outer derivations
of C1�V�, and ea � ad��a�, with f�ag a basis of anti-
Hermitian matrices of Mn�C�, are inner derivations. The
dual basis will be denoted by f��; �ag. In this particular
basis, we have

A � A��
�; � � 
�a�

a; � � �a�
a:

If we choose the connection to be anti-Hermitian, we can
write � � �b

a�b�a. The curvature tensor associated with
! is

� � d!	! ^!:

We can also define the field strength:

F � dA	 A ^ A:

Then one can identify

��� � F��; ��a � D��a; �a� � 
D��a;

�ab � ��a;�b� 
 Ccab�c:

Ccab are the structure constants in the f�ag basis.
A gauge transformation is performed by the choice of a

unitary element U of Mn�C�, satisfying h�eU; eU� � 1.
Then in the gauge e0 � eU

!0 � U
1!U 	U
1dU;

� is invariant under gauge transformations, then A and �
transform as follows:

A0 � U
1AU	U
1dU; �0 � U
1�U:

Taking into account that all forms appearing here are
matrix-valued, it is quite natural to use the invariants
provided by generalized determinants in the construction
of Lagrangian densities. For more details, see J. Madore’s
book [12].
III. NON-COMMUTATIVE BORN-INFELD
LAGRANGIAN

The generalization proposed in our previous article [2]
can be adapted in the noncommutative gauge theory
framework. The Lagrangian which we shall consider is

L �
������������
detjgj

q

 fj det�1 � g	 J ��jg1=4n; (1)

and � � ���L̂
�� with L̂�� the generators of the funda-

mental representation of SO�4	 n2 
 1�. ��� are the
components of curvature two-form defined in previous
section, and then are anti-Hermitian elements ofMn�C�. J
is an element of SL�2;C� of square 
1.
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Similar approach was suggested as early as in 1981 by
Hagiwara [13], and developed later on by Park [8]. Our
improvement consisted in ensuring the Hermiticity by
incorporating quasicomplex structure generated by an
extra matrix J and in taking into full account the discrete
geometry of matrices.

The above Lagrangian contains contributions coming
from two types of fields: the classical Yang-Mills poten-
tial A � A��

� corresponding to the usual space-time
components of the connection one-form, and the scalar
multiplet coming from its matrix components � �
�a�a � �b

a�b�a. In the case when � � 0, this
Lagrangian coincides with the one investigated in [2],
with G � SU�n� and R the defining representation. The
complete analysis of general solutions of equations of
motion seems to be too tedious at present. This is why
we shall restrict ourselves to a qualitative analysis of the
case when the space-time components of � do vanish
F�� � 0, leaving only the contribution of scalar multip-
lets degrees of freedom.
IV. THE REDUCED LAGRANGIAN FOR SCALAR
FIELDS

We now specialize in the case where the algebra is
C1�R4� �M2�C�, and choose the simplest ansatz with
only one scalar field ’ 2 C1�R4�:

� � ’�:

In this case, the determinant introduced in (1) is:�������� ĝ�� iD�

iD� ĝab 	 iH

��������;
where

H � f�abga;b�1;2;3; D� � fD��ag��0;1;2;3
a�1;2;3

;

ĝ�� � g�� � 12:

By virtue of Schur’s lemma one can reduce this deter-
minant to the one of the matrix

j1 3 	 iH
D��D
��j:

It was shown in [2,8] that for matrices of this type, the
determinant is a perfect square. Therefore, one can ex-
press its square root with a finite sum of traces of the
matrix M � iH
D�D� [from now on, we shall adopt
the shortened notation D��D

�� � D�D� � �D��2]
and finally one can deduce the most compact form of
the desired Lagrangian:

L � 1
 f�1	 3�
2�D’�2�2 	 16�
2’2�’
m�2g1=4

�
���������������������������������������������
1	 4�
2’2�’
m�2

q
:

where the parameter �, defining the critical field
strength, and the parameter m, defining the mass of the
-2
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FIG. 1 (color online). Characteristic curves and points in the
phase space.
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scalar field, hare explicitly displayed. In what follows
they will be set to one, in order to simplify the formulas.

This Lagrangian is a particular case of the most gen-
eral form of spherically symmetric ansatz, which con-
tains one real and one complex scalar field in the
noncommutative part and one complex scalar field and
one U(1) Abelian gauge field in the commutative part of
the connection.

V. THE STATIC FIELD CASE

In this section we show that there is no possibility to
obtain nontrivial static configurations in the present sys-
tem, with Higgs multiplet reduced to a single scalar. We
generalize Derrick’s theorem [14] to our particular
Lagrangian. The idea of the proof is to use spatial dilata-
tion of the field ’�r� ! ’��r� � ’��r� in order to gen-
erate a one-parameter curve in the space of fields around
such a solution. Then the variational principle along this
curve gives @S�’��=@� � 0 at � � 1, i.e.,

Z
4(r2dr

�
@L
@’0

’0 
 3L
�
� 0: (2)

One can show that the function under the sum sign

f�’;’0� � 1=3
�
@L
@’0

’0 
 3L
�

�

����
A

p

B3=4
��1	 3p��1	 2p� 	 16s2� 
 1;

where

s � ’�’
 1�; p � ’02; A � 1	 4s2;

B � �1	 3p�2 	 16s2:

Then f is always non-negative. This can be easily seen if
you observe the following implication:

��1	 2p��1	 3p� 	 16s2�4 � ��1	 3p�2 	 16s2�3

) f � 0;

the first inequality being obvious. Therefore the condition
(2) is satisfied if and only if f is zero for all values of r.
The equation f � 0 admits only trivial solutions, ’0 � 0
and’ � 0 or 1. This leads to the conclusion, as in the case
originally considered by Derrick [14], that nontrivial
solutions can not be found in this model.

VI. THE TIME-DEPENDENT SCALAR FIELD

A scalar field with an upper limit on its strength can be
used as driving force in primordial cosmological models.
This is why an homogeneous, only time-dependant con-
figuration should be studied before being coupled to
gravitation.

We have performed numerical analysis of the time-
dependent configurations of scalar field resulting from
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the simplest ansatz’ � ’�t�. It gives an interesting phase
space portrait and confirms the idea that Born-Infeld-like
theories set an upper bound on the velocities (i.e., time
derivatives of ’) and on the field strength as well. Such an
ansatz could be of interest in cosmological models, when
it can be coupled with the scale factor a�t� of Robertson-
Friedmann metric. The equations of motion in this case
take on the following form:

_’ � u; �1	 4X�g�X; Y� _u	 4ss0h�X; Y� � 0;

where

s � ’�’
 1�; s0 � 2’
 1; X � s2;

Y � u2; g�X; Y� � 16X�1
 9Y� 	 �1
 3Y�2;

h�X; Y� � ��1
 3Y�2 	 16X��1
 Y 	 8X� 
 6�1

	 4X��1
 3Y�Y:

At some points of the phase space the derivative _u is not
well defined. These are the points at which the polyno-
mial g vanishes (four curves in Fig. 1). Nevertheless, at
certain points [where ss0h�X; Y� � 0] the singular behav-
ior is only apparent because the undetermined ratios 0=0
happen to have finite limits. The total number of these
particular points in the phase space is 16, but only two of
them display genuine singularity. In the 14 remaining
special points, _u is kept finite. For these points it is
possible to calculate analytically the tangent vector of
limiting trajectories passing through them (see vectors in
Fig. 1). The only two points with genuine singularity are
the ones without any vector attached to them. They are
found on the central vertical line ’ � 0:5 on both sides of
the horizontal line and close to it.

The phase space portrait is symmetric with respect to
reflections around the vertical line ’ � 0:5. Cyclic tra-
jectories are contained inside two pentagonlike areas
circumscribed by separatrices. These areas are disposed
symmetrically with respect to the vertical line ’ � 0:5.
One of these areas is represented in more details in Fig. 2.
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FIG. 2 (color online). Trajectories in the confined region of
the phase space.
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One can note that in a certain region of the phase space
the trajectories are periodic and are defined for all values
of time t. If one chooses the initial conditions outside this
region, integration ends up after some finite time. This
means that the solutions ’�t� obtained with these initial
conditions have their second derivative divergent after
finite time when they hit one of the curves on which
g � 0.
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Nevertheless, some of these curves, with very special
initial conditions, can go beyond the singular curve g � 0
passing through the points at which the undefinite ex-
pressions become finite again.

VII. CONCLUSION AND PERSPECTIVES

In this article we have proposed another generalization
of the so-called Dirac-Born-Infeld Lagrangian (see
[6,7]). Next, we have studied some solutions in the case
of simplest ansatz with two by two matrices. We have first
considered solutions in 3-dimensional space with spheri-
cal ansatz and proved a no-go theorem (similar to the one
found by Derrick [14]).We then concentrated our attention
on the 1-dimensional case (pure time-dependent) and
investigated the dynamical properties of the present
model.

The highly nonlinear behavior of the field ’ in this
model suggests that when coupled to gravitation in a
standard way, i.e., via minimal coupling resulting from
the replacement of ordinary derivatives by their covariant
counterparts in presence of the Einstein-Hilbert
Lagrangian for gravitational field, it may lead to unusual
behavior of cosmological models. The investigation of
such models using this scalar field will be the subject of
a forthcoming paper [15].
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