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We present a new non-Abelian generalization of the Born-Infeld Lagrangian. It is based on the observation
that the basic quantity defining it is the generalized volume element, computed as the determinant of a linear
combination of metric and Maxwell tensors. We propose to extend the notion of the determinant to the tensor
product of space-time and a matrix representation of the gauge group. We compute such a Lagrangian explic-
itly in the case of theSU(2) gauge group and then explore the properties of static, spherically symmetric
solutions in this model. We have found a one-parameter family of finite energy solutions. In the last section, the
main properties of these solutions are displayed and discussed.
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[. INTRODUCTION Lagrangians depending on higher-order invariants of the
field tensor, too. On the other hand, it is well known that a
Recently there has been rising interest in the Born-Infelccorrect mathematical formulation of gauge theories considers
nonlinear theory of electromagnetigm 2] and more general the gauge field tensor associated with a compact and semi-
Lagrangians of this type, which appear quite naturally insimple gauge grouf® as a connection one-form in a princi-
string theories. Non-Abelian generalizations of a Born-Infeldpal fiber bundle over Minkowskian space-time, with values
type Lagrangian were proposed by Hagiwara in 198]L  in Ag, the Lie algebra of. In local coordinates we have
and more recently, including a supersymmetric version, by
Schaposnik and co-workersee[4—6] and the references A=Ade“La (1)
within). In [7] we analyzed one of the possible non-Abelian
generalizations of the Born-Infeld Lagrangian, and showedvherelL,, a=1,2,... N=dim(G), is the basis of the ad-
the existence of sphaleronlike solutions with a qualitativejoint representation aflg . In many cases another represen-
behavior similar to the solutions of the combined Einstein-tation must be chosen, especially when the gauge fields are
Yang-Mills field equations found by Bartnik and McKinnon supposed to interact with spino(sf. [9—11]). It is always
[8]. The non-Abelian generalization proposed [in] was possible to embed the Lie algebra in an enveloping associa-
quite straightforward indeed: it consisted in the replacementive algebra, and to use the tensor product
of the electromagnetic field invariants
A=A2dx*‘®Ta, 2

1
F“"F,, and *F“’FAPZEG’”}"JFWFM whereT, is the basis of the matrix representation4f , so
that now the non-Abelian field tensor will have its values in

the enveloping algebra:
by similar expressions formed by taking the traces of corre- veloping aigebr

sponding Lorentz invariants in the Lie algebra space:

s

1
F=dA+ S[AA]=(F},dx*\dx") @ T,. 3

1

a puvpeb * ma Nppb _ T uvipga b
GaoF™ #Fy, - and - gapF™ T, =5 Gape™ I FLLF, - Now, in order to reproduce as closely as possible the classi-
cal Born-Infeld Lagrangian, a natural idea is to embed the
However, except for a straightforward analogy, this expresspace-time metric tens@,,, also into the enveloping alge-
sion does not seem to come from any more fundamentdira, tensoring it simply with the unit element in the appro-
theory. In addition, this generalization still keeps a particularpriate matrix space, i.e., replacing it lgy,,®ly; then we
dependence on second-order invariants of the field tensotan add up the metric and the field tensors and take the
characteristic for &our-dimensionamanifold only; in higher  determinant in the resulting matrix space. This structure of
dimensions the determinant would lead quite naturally tahe matrix is similar to the structures found in certain real-
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izations of gauge theory in noncommutative matrix geom-Il. NON-ABELIAN GENERALIZATION OF BORN-INFELD
etries [12], or in Lagrangians found in matrix theories LAGRANGIAN
[13,14). Such a Lagrangian has been proposed by PEsk

A. Basic properties of the Abelian case
and reads as follows: prop

Let us recall several basic properties of the Abelian Born-
Infeld Lagrangian, which we would like to reproduce in the

F . - A
Seard F.0] proposed non-Abelian generalization. In their original paper
Ciea 1od [1], Born and Infeld considered the now famous least action
= fj%4a ﬁg;(gﬂv®ldR+B F/[.V®Ta) R— \/H)! principle;
4 Sei[9,F]

where @ and B are real positive constants. Thelorder \/— 4
root is introduced to ensure the invariance of the resulting ~— R4£Bl(ng): R4|—B|(9-F) |gld*x
action under the diffeomorphisms. As a matter of fact, with

the root of this order we are able to factorize out the usual
four-dimensional volume elemenf[g[d*x and rewrite the =JR4,32(\/|de(9W)|—\/|de(gw+,8_lFM)|)d4x
action principle with the subsequent scalar quantity: ‘
. 1 1
Lpar(F,9)=a|| det(l4xq,+ B F)*R=1] (5 =f4/32(1— \/1+ —2<F,F>——4(F.*F)2)Md“x
MR k B 4B
and 1 1
= fwﬁz 1—\/1+ E(BZ— E?)— E(E.B)2 Vigld*x,
Spard F.g1= LMLpark(F,g)J@d“x, (6) ©)
N where d*x=dx°/Adx!Adx2/\dx3, B is the magnetic field,
where E is the electric field, F,F)=1F, F“*, (FxF)
=;€"""F , F ., ande*"*7=(11\[g]) 54145 -
[ EFa MAe T (MMV)ngpprﬁﬂlV (7) This action can be defined not only on the Minkowskian
2 # & 7 pro’ space-time but also on any locally Lorentzian curved mani-

. _ o fold, as in the original case. It is useful to recall here three
F is an endomorphism dt"® ("%, andM ,, denote the gen- important properties of the Born-Infeld Lagrangian, which
erators of the Lorentz groufin the defining representatidn  we want to maintain in the case of the non-Abelian generali-

It is also useful to introduce the notation zation, also valid in any finite dimension of space-time.
(1) Maxwell's theory (or, respectively, the usual gauge
.1 . theory with quadratic Lagrangian dengigshould be found in
Fo=sFL MM ®)  the limit B—o:

1
B

The generalization of the Born-Infel(Bl) Lagrangian 1 4
proposed in this paper results in a variational principle that Sgi=— JR@(F*F)\/@d X+0
leads to a highly nonlinear system of field equations, whose
general properties can be analyzed using standard techniques
[16—18. Our aim in this article is to check whether station- _ 1J EA 1 )

. L e . =—= *F+o|l —
ary regular solutions with finite energy can be found as in 2 Jpa B2
[7]. We consider the standard 't Hooft monopole ansatz,
which in this particular case leads to one ordinary differential 1 1
equation for a single functiok(r) of radial coordinate. The —— f —(B2-E? \/@d4x+ 0( _> ) (10)
structure of this equation is similar to the one found 7, R42 B2
with a more complicated term corresponding to friction.
Nevertheless, the structure of solutions and their energy (2) There exists an upper limit for the electric field inten-
spectrum are very different, as shown in the last sections dity, equal tos when there the magnetic component of the
our article. We have not found solutions joining together twofield vanishes:
different vacuum configurationigalled Bl sphalerong as in
[7]. We find instead a family of solutions labeled by integer Lailg—o=B2(1—V1— B 2E?). (12)
winding numbem, and a real parameter bounded from be-
low. The energy integral tends with— o to the energy of Due to this fact, the energy of a pointlike charge is finite, and
the Bl magnetic monopole obtained [iA]. the field remains finite even at the origin. This was the main

125003-2



NON-ABELIAN GENERALIZATION OF BORN-INFELD . .. PHYSICAL REVIEW D68, 125003 (2003

goal pursued by Mi¢2], suggesting the choice of nonlinear This extra doubling of tensor space is necessary in order to
generalization of Maxwell’s theory. Indeed, one has for aensure that the resulting Lagrangian is real. We are left with
point chargee, the root of order 4r, so that the invariance of our action
under the space-time diffeomorphism is preserved.
er ol \Je2+rt Let us recall a few arguments in favor of this construction.
—_— Energy:j ————1|r?dr<wo, The simplest way to generalize the Born-Infeld action
vez+r4 0 principle to the non-Abelian case seems at first glance the
(12 substitution of real numbers by corresponding Hermitian op-
erators, as in quantum mechanics or in noncommutative ge-
(3) The Born-Infeld action principle is invariant under the ometry. Then one would arrive at the following expression:
diffeomorphisms ofR*. In this respect, this theory can be
viewed as a covariant generalization the sense of general Ult) e G,
relativity) of Mie’s theory, as well as an extension of the . o (15
usual volume elemen{|g[d*x. By o Fp®Ta,s
It is also well known that the Born-Infeld electromagne-

E:
r2

tism has good causality propertieno birefringence 9w G ®ldn _
and no shock wavesas well as interesting dual sym- Wherely andiT, are Hermitian matrices. What remains
metries(electric-magnetic duality, Legendre duality, cf9—  now to make the generalization complete is to extend the

21,18,23). Here we shall not consider these aspects of theiotion of the determinant taken over the space-time indices
theory, our main interest being focused on static solutions. in the usual case. We propose to replace the determinant of a
4x 4 matrix (denoted hereafter dg) by a determinant taken
B. The new non-Abelian generalization in the tensor product of space-time and matrix indices of the

: o ' . ._representatioR (denoted hereafter dgt,g). Notice that this
Our statrt|n%pomt_|s_ th? gauge f|elc(j®tlens?r a;,souated W'ﬂp(ind of tensor product of algebras appears in the context of
a compact and semisimpie gauge gr p_JIe IN€d as a con- yna noncommutative geometry of matridese[12—-14). In-
nection one-form in the principal fiber bundle over

; . . L . ) deed, the general structure of the connection one-form in
Minkowskian space-time, with its values g, the Lie al- 9

. . : these noncommutative geometries is very similar to the one
gebra ofG. As explained in the Introduction, we chose thein Eq. (13) g y

representation of the connection in the tensorial product of a
matrix representation of the Lie algehry; and the Grass-
mann algebra of forms oveV 4:

In this kind of generalization, one would replace the ob-
jects in Eq.(9) following the procedures in Eq15). This
leads to a complex Lagrangian in the case of a non-Abelian
A:AidX,L@Ta’ (13) structure group. Indeed, the determinant/\ggfg(gW@ldR

+B71F,®IT,) is not real when dimig)>1. Therefore
whereT,, a=1,2,... N=dim(G), are anti-Hermitian ma- we must find a different generalization.

trices which form a basis of the particular representaaf Another possibility would consist of taking anti-
dimensiondg of Ag, specified later on. Hermitian generators tensorized with the fi€ld This was
By analogy with the Abelian case, we want the Lagrang-proposed by Hagiwari8] and studied in more detail by Park
ian to satisfy the following properties: [15] for the Euclidean case. This substitution leads to a La-
(1) One should find the usual Yang-Mills theory in the grangian satisfying the requiremerits, (3), and(4), but not
limit B—oo. (2) (for details, see the article by Park5]).

(2) The (non-Abelian analogue of the electric field Moreover, Lagrangians obtained with the above choices
strength should be bounded from above when the magnetidisplay invariants of order 3 in the field, destroying the
components vanishiTo satisfy this particular constraint, we charge conjugation invariance of the theoFy>—F, and
must ensure that the polynomial expression under the roqgiossibly leading to indefinite energy densities.

should start with terms £ 8~2(E?)2+ - - - whenB2=0.] This is why we propose a third choice. We start from an
(3) The action should be invariant under the diffeomor-alternative formulation of the Abelian version. As a matter of

phisms ofR*. fact, one can write the Abelian Born-Infeld Lagrangian in the
(4) The action has to be real. following alternative form:

This enables us to introduce the following generalizationg [F,g]
of the Born-Infeld Lagrangian density for a non-Abelian BILT
gauge field: :f Bz( Val—| det (Leg,,+B siF )" d%,
£= gL R | 2o M
(16)

— -1 a 1/4d
B \/@ |de(J12®gW®ldR+,8 ‘]®FM”®T6‘)| E whereJ is a 2X2 complex matrix whose square is equal to
(14) —1,. The Lagrangian is independent of the choiceldds
can be easily seen. In E€L6) [see also Eq(15)], the imagi-
In the expression abové,denotes &1(2,C) matrix satisfy-  nary uniti can be considered as the anti-Hermitian generator
ing J2=—1,, thus introducing a quasicomplex structure. of u(1). In ourformula(16), we use an obvious notation for
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the space on which the determinant is defined. With the comates in the phase space of a relativistic point particle mini-

respondence displayed in EQ5), we end up with the fol-
lowing action principle:

S[F,g]=fR4a( JH—\

+BNIOFE ,®T,)

det (1,®0,,® lag
2@ MaR

l/4dR) dx

17

satisfying all the requirements we asked @, (2), (3), and
(4), by takingJ in SL(2,C). The Lagrangian is again inde-
pendent of the choice af. In particular, we find the usual
Abelian Lagrangian if we replacg, by i and setdg=1.

It was supposed in Eq17) that« and B are real positive
constants. It is clear that only the root of degredyawill
lead to an expression whek& can be factorized out as an

mally coupled to the Born-Infeld field. Similarly, we can
extend this interpretation to the case of coordinates taking
their values in an appropriate Lie algebra, i.e., by imposing
the following relations:

overall factor. This enables one to rewrite the action using a

purely scalar quantity as follows:

L(Q,F)=a(1— det (1,®1y g +B IOF) l/4dR),
2o MeR R ’
(18
so that
S[gyF]:ﬁ%AL(g,F)\/HdAX, (19)

whereF=3F3 M**®T, as defined in the Introduction.

I1l. EXPLICIT COMPUTATION OF THE DETERMINANT
A. General remarks

The determinant defined in E¢18) can be written in
several equivalent forms:

det (L®l+B NI®F) (209
2@ M®R
= det (s®l+B 'sJoF) (20b)
29 M®R
= det(1+B72F?), (200

MeR

where s and J are elements ofSL(2,C), J satisfying

J?=—1. For example, choosing=io, andsJ=—ioj in

(20b), we get the following determinant:

_ilgfll‘: 1
—1 iB*l"ﬁ

—ipF;, 0T,
—0,,®1

9,01
iBTIFS,0T,
(21)

=[g| %

[X,“XV]=—eiB2FiV®Ta,
[X,.P,]=—ig,,®], (22)
[P..P,]=eF,&T,,
with
X, =Xi0—iT,, P,=Pie—iT,. (23

On the other hand, the particular for(@0c) enables us to
check that the Lagrangian is indeed real, and at the same
time it represents an obvious generalization of the Abelian
Born-Infeld action in the form given if23], and the refer-
ences therein. It is worthwhile to note that if one choakes
=—i03 in (209 the determinant can be written as an abso-
lute value of a complex number. Indeed, one has

1-iB~'F 0

| = det(1-ig~1F)2
0 1+ig F P

M®R

(24)

We shall use this particular form of the determinant in the
subsequent computations.

B. Comparison with the symmetric trace prescription

Let us recall a useful formula relating the determinant of a
linear operatoM to traces:

[de(1+M)]#
=exp{Btrlog(1+M)]}
N o i_Btr(Mp))“P
e[Sy

(25

which is a straightforward generalization of the determinantvherea e[ S,] and[S;] is the set of equivalence classes of
considered by Schulld23]. Following Schuller’s idea, the the permutation group of order The multi-indexa is given
matrix (21) in the Abelian case can be interpreted as theby a Ferrer-Young diagram or equivalently satisfies the
matrix defining commutation relations between the coordi+elation
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n trg the trace over the representation indices, and bythe
E pay,=n, a,=0. (26) trace over the tensor product of these two spaces. For the
p=1 sake of simplicity, we have absorbed the scale fagtot in
Using this trace formula, we can develop our Lagrangiarihe definition of the field tensdf. When needed, the appro-
up to any order irF. In order to avoid ambiguities, we shall- priate powers of3™* can easily be recovered. Following
denote by tf, the trace taken over the space-time indices, by(200, we have,

1 (—tr®(ﬁ2k) .
4drxk

det(1+ FZ))”‘“R—E > (—1)“k1;[

n 0 a=(aq, ..., an) 1 ak!

ay ( trM(ﬁaT. .. ﬁa?k) trR(Tal’"' . ~Ta2mk) -

=§ > <1>“H H o o

n=0 a=(aq,..., ap =1 ak m=1
- Ckk#O

wherea e[S, ] satisfiesE|_kay=n.
We can compare the resulting expansion with the symmetrized trace prescription given by Tsel2i. iwith the
notation adopted above, we have

1 - 1 c e \
——Strg| de(1+iF?T,) 1’2=—StrR( de(1+ FanTaTb)l’4
M dr M

dr
o) n ~ A~ a
1 tr(F21. . . F32¢) k
_ —1)\n RN e
dRStarZO a=(a1,2...,an) ( 1) Hl ay! ( 4k Tal TaZk
» ay tI’M(l’ialm' . .ﬁag’k)) 1 ay
= 1 - | =Str Tam---T
nZO a:(al,z..,an) ( ) Hl a'k H ( 4k dR R 11;[1 n’ll_:[1 alm azmk
- akiO
(28)
|
Now we can easily compare the series resulting from similar —
expansions of two different Lagrangians: the symmetrized-synl F.91= 5 StrR( \/%UH"F))
trace prescription, and the generalized determinant prescrip-
tion, i.e., comparing Eq$27) and(28) with the correspond-
ing expansion of the Abelian version of Born-Infeld electro- 1 1 ., 1 s 1
dynamics. In both cases, the third-order and higher odd-order dRSUR 2UmF gty F = 32(UMF )?
invariants that are possible in a non-Abelian case do not
appear(as they are absent in the Abelian version, of course a2 b 2 by e ed
Let us compare, up to the fourth order, the expansion in = E(F FP)Kapt g[(': FP)(F5FY)
powers ofF of the two Lagrangians. Our Lagrangi&h?)
yields the following series: +(F2*FP) (FCxF K apeg » (30
1 , 1 4 asn .
L[F,g]:— 4d tr®F + o 8d tr®F 32d2 (tI‘@F ) with K{abcd} 3(Kachd+ Kachd+ Kadec Sgbscde
R + 7S5 Shaet 7 SaaShea) - As usual we note that
1 1
:—E(Fa,Fb)Kab+§(Fa,Fb)(F°,Fd) L _
i
X(_ Kachd+ Kabcd+ Kacbd) 2 2
1
+§(Fa,*Fb)(FC,*Fd)Kacbw (29 whereg,p=(cr/dR) Sap, S ab™ 0caSYp is completely sym-
metric and real =g is completely antisymmetric
[ d |pcab chab l l i i

whereas the symmetrized trace prescription2df] gives and real, and
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(_ 1)[n/2]

Kal... a, d—RtrR(Taln

T (32

C. Explicit calculus for G=SU(2)

We use the fundamental representation Gf SU(2),
with generators defined by,= —(i/2)o,. In order to sim-
plify the calculus, we have rescaled the form(24) replac-

ing B by 1/2, so that it compensates the factor 1/2 in the

definition of T, . It is useful to note that in the formul&4),
the expression dﬁ/tw(}l—iﬁ*lf:) is a perfect squaréas

noticed already if15]). As a matter of fact, one can multiply

PHYSICAL REVIEW D68, 125003 (2003

the complicated expressions can finally be simplified and
expressed as functions of three invariants only, even though
there are eight for a gener@U(2) Lagrangiarn(cf. [25,26]).

IV. SPHERICALLY SYMMETRIC STATIC
CONFIGURATIONS

A. The magnetic ansatz and equations of motion

Our aim now is to study static, spherically symmetric so-
lutions of purely “magnetic” type. They are given by the
so-called 't Hooft—Polyakov ansaf27]:

this determinant by % det l® —io,), to obtain 1—Kk(r .
Y £ detusrl 2 A= 2( ) Udut with U=e"T
_ ] — s "a .
/SgtR(l 2iF) AggtR[ch@( io,)+F2@(i050,)] (33 —[1=K(D)][T,.dT.]
=|g| 72 det[g,,®(—ioy) +F,@(i0p0,)]. =[1-k(r)](Tysinbde—T,d6)
MeR
34 1-k(r) -~ - —
34 = 2( )(r/\T)-dx, (40)
It is easily seen that the matrix in the last expression is r

antisymmetric, so its determinant is a perfect square. This

implies that the highest power df in the expansion of
exd 3 trlog(1+2iF)] is 4; therefore

(39

R 1 . \]2
det(1+2iF)= exp{—trlog(lﬂF)”
MeR 2

Lt F2) 1 (F*| 1 [F*
= +§tr® 7 —|§tr® 3 —2tr® 4
1[1 [E2\]7°
+E Etr@, 7 (36)
t, tz ty t5)\?
=1y T8 ) S
wheret;=tr [ (F)'].
Using formula(24), we get
L=1-4(1+2P-Q?)2+(2K3)%, (39)
where
1 a
2P= 7= (F%Fy),
2 1 1 2 1 a b c d
Q :§t4_ 3_2t2:Z(F H*E)(FE*FO) K aepgs (39

K= — o ty= s eapddr o EEDEC)
3 12 3 Geabc M .

where the usual notation is used. When expressed in compo-
nents, the same formula becomes

(1K),
=———%¢€

A= ™, (41

r
where

ab,c,...=123;i,jk ...,=12,3; €n=egygjn-

The notion of spherical symmetry for gauge potentials in
Yang-Mills theory has been analyzed by Forgacs and Manton
in [28]; see alsd29]. The most general form for a spheri-
cally symmetricSU(2) gauge potential is often called “the
Witten ansatz”(cf. [30]); an exhaustive discussion of its
properties can be found ii831]. When this form of potential

is chosen, there remains a residUdl1) symmetry preserv-
ing the field, and the situation can be interpreted as an Abe-
lian gauge theory on two-dimensional de Sitter space,
coupled to a complex scalar fieldwith a Higgs-like poten-
tial. Then the problem is parametrized by four real functions
ay, a1, Re(w), and Imfwv) (we use the notation introduced
in [31]). Fixing the gauge enables one to sgt=0. Next,

one can eliminatea, if one restrain the solutions to the
“magnetic” type only. In the static case, the remaining equa-
tions of motion possesses a first intedidilie to the residual
globalU(1) symmetry. The condition that the energy must
be finite at infinity forces it to vanish in this case. This means
that we can choose the phase of the functioat will, thus

It is also interesting to note that our Lagrangian dependseducing the form of the potential to the one proposed by

exclusively on three invariants &f (the third-order invariant

entering via its squajealthough the determinant can lead to

expressions up to the eighth order fn In this particular

't Hooft in 1974[27].
Therefore, the only nonvanishing components of the cur-
vatureF can be identified as the “magnetic” components of

case, there exist many relations between the traces, so thie Yang-Mills field:
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1 .. For the subsequent analysis, it is very useful to change the
Bf’z—z[rira(l—kz)—rk’Pf‘], (42)  independent variable by introducing its logarithms: log(r).
er Then the action can be expressed as follows:

wherer;=x;/r and P3= 5—r?r, is the projection operator i s

onto the subspace perpendicular to the radial direction. S:f (1- \/K)e dr, (45)
The only nonvanishing invariants of the field appearing in

the Lagrangian density can now be expressed by means wfhere

the spherical variable one unknown real functiok(r), and

its first derivativek’(r): A=(1+a’+2b)*+4a’b?*=(1+a*)[(1+2b)*+a’],
1 a=(1—-k?/r?,
2P=—[(1-K*?+2(rk")?],
' b=Kk?/r*.
1 , Now the equation of motion can be written as
Ks= S5L(A=kO)(rk)?), (43) q
d
Q2=0- A+ Ai ZK—S - E'Ak:O, (46)
Then the action takes on the following form: or equivalently, in a more standard form,
1-k)2+2(rk’)?)? -
s=”1—|(1+( )2+ 2( )) =y,
r4
u=7y(k,u,7)u+k(k?-1), (47)

radr. (44)

4 1/4
+—(1-k?)%(rk’)*
L TIOD } with

u?+2uk(1—k?) +(1—k?)?2 . 6u(1—k?)[ku?+2u(1—k?)+k(1—k?)?][r*+2u?+ (1—k?)?]

A T R [+ (1= K2)2][(r*+2u2)2+ (1— KD (r*+ 6u?) ]

(48)

The coefficienty, which plays the role of dynamic friction, B. Asymptotic expansions
is quite similar to the one found Y] (except for a missing . . -
factor 2, due to a printing errprin the usual Yang-Mills We have found two expansions in positive powersr of

theory with the same ansatz, the corresponding factor is judthich satisfy the equations of motion up to a certain finite

yym=1. order inr nearr=0. The first one depends on two free
The system47) is not autonomousgi.e., some of the co- Pparameterk, anda, and starts with the following expres-

efficients depend explicitly on the variablg, so that the sions:

qualitative analysis of solutions should be performed in an

extended three-dimensional phase spack, (1) (see, for ex- a? g

ample,[32]). Of course, one cannot expect to find true sin- k=kq+ar—Kkq 6—+ —|r

gular points, because the “time” variabtenever stands still. 9 12

Instead, one can find asymptotic behaviors of the fundtion

2

whose dominant terms for— —c (r—0) or for 7— (r N a®(52- 709)_9a493+(g_1)94r3+0(r4)
—o0) satisfy the equations of motion up to a required order, 108a°g? ’
neglecting infinitely small terms. However, for— there

are two genuine fixed pointsk&€1,u=0) and k=-1u (49)

=0). Having found these asymptotic expansions, we then

try to extend them from both sides so that they can meet and ) _ _ )

produce a regular solution valid for all values of whereg=1-kj, a#0, andg#0. This expansion displays a
Although our equations display asymptotic expansiongertain similarity with the expressions found [33,34,

analogous to those found [83,34,7, careful analysis shows which depend on the same parametgr

that solutions of the Bartnik-McKinnon tyg&] are excluded The second one depends on only one free paranteter

here. and starts as follows:
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k It is remarkable that the asymptotic behavior ato is the

! ‘ same herdup to the orderO(r )] as the corresponding

- / behavior of the spherically symmetric static ansatz in the
et usual Yang-Mills theory, which makes it easier to interpret

0.6 ] the characteristic integrals as magnetic charge, energy, etc.
Taking these expansions as the first approximation either

o atr=0 or atr =, we then use standard techniques in order
0.2 - to generate solutions valid everywhere. It is interesting to
note that, when we started from infinity, no fine-tuning was
AN

0 "_: 5 necessary, and an arbitrarily fixed constamtould lead to a
o i solution which, when extrapolated te=0, would define a
n=1 particular pair of values of constartg anda. On the con-
-2 10 j 0 10 20 30 trary, starting front =0, arbitrarily chosen values &, and
. a would not necessarily lead to good extrapolationrat
0.31 ] =o. We shall discuss the properties of numerical solutions

so obtained in the following subsection.

C. Numerical solutions

0.11

The search for numerical solutions was based on the same
. method as i 33,34,7. With the expansion$49) and (51),
0 R k we evaluate the initial conditions used as starting point for

the numerical integration of Eq47).
The three parameters occurring in the asymptotic expan-

oz ° 02 0.4 06 0-8 t sions(two atr =0 and one at =«) are interrelated by two
FIG. 1. Plots of solutions for the parameters=—3,1.2, constraint equalities, therefore the solutions can be labeled
4,7,10. by only one real parameter. We chose to index the solutions
with the parametec of Eq. (51), with ¢>0, or its logarithm
( 3b2+920*+ 6080° ) 7.=l0g(c).
k==*|1-br?+ ré+0(rd |. As in the Bartnik-McKinnon case, we can assign to each
10+20*+ 1600* solution an integem, with n—1 denoting the number of

(50 zeros of the functior or the winding number of the corre-
sponding trajectory in the phase pladey), as seen in Fig.

1, where a few solutions are plotted. When the parameter
goes from—o to +, we observe that this integargrows

Nearr=o0, the Taylor expansion can be made with re-
spect tor ~L. It depends on one free parameter, denoted: by

3¢2 1 from 1 to. At certain special values of the parametgr
k=+|1— ¢ + >C +0| =||. (51)  thisinteger increases by 1. Here are the first critical values of
r 4r? r3 Te:

7. 1.658 4.781 7.510 10.092 13.218 16.530 19.813

The two graphs in Fig. 1 should be combined in order to givealways lower than 1 and bigger thanl (as a matter of fact
a correct representation of the trajectories as they appear ky=0 is a solution. This is radically different from the
the extended three-dimensional phase space including tt®haleronlike solutions or solutions of Bartnik-McKinnon
variable 7=logr. The graph on the left represents the cuttype found in[8,7]. _

k,7, and the graph on the right represent thelcut, i.e., the The two parameterk, anda of Eq. (49) are functions of

usual phase space of the functiofr) and its first derivative the parameter;. We have evaluated the energyof ?he
solutions and the values of the paraméigifor 7. varying

u=k. One can see some trajectories on the plapewith  from — 10 to 20. The energ§ is represented as a function of
various winding numbers. the parameterr; in Fig. 2. This figure represents two en-
Our solutions do not interpolate between the two singularargements of the upper graph with the precision of 4
points atk=1 andk=—1, but between the singular point at order to show local minima of the energy curve. The energy
k=1 forr=c and a certain valuk, (related tor;) whichis  minima of each class of solutions are found near the critical

125003-8
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E ko
I I I | I I
|n=2 |n=3|n=4' n=>5 ‘ n==6 I n="7T |
! | I I | |
I L I ! I
! [ I ! I
I [ I | I
L/ N 1 ! L .
\/ PP ot
o o | | |
o sb | I ! | I
a2 : d%ko
l ar?
1.21 |
. I N .
| R N N
075 1 1.25 1.5 1.75 2 2.25 2.5 n=1 0.6 n=2]n=3|n=4|n=5| n==6 | n="7 {
FIG. 2. Energy as function of the parameter, with local 0.0l | I | I | i
mInIma visIbIe(the magnification is 100 times higher for the second | | | | |
minimum display. 0.2 [ |/\L | | : |
values of the parametet, and as far as we can judge, given - — [ a— »—1*;——{ e 1, ™
the_precigi_on of numerical -calculus employed, coincide_ with Ll | | | | |
their positions on ther, axis. Supposing that the solutions
attaining local minima of energy are stable, we conjecture o : : l : : :

that these most stable solutions can be grouped in couple.,
with winding numbersy andn+ 1, starting with the couple

) . FIG. 3. kg as a function ofr., and its second derivative. The
n=1n=2. The energies converge to the I|mETC=x

singularities of the second derivati‘aﬁkoldrg occur at values of

=E,-..=1.236G ..., which coincides with the energy of r, that coincide with the change of winding number
the pointlike magnetic Born-Infeld monopole computed in
[7].

The last two graphs in Fig. 3 show .th.e. specific features 0]z:onfiguration atr —oo, but their behavior near the origin
the dependence of the paramékgi(the initial value of func- . . . .
. - . . =0 is very different from the sphaleronlike solutions. At the
tion k atr =0) with respect tar,. The dependence is smooth

only between the critical values of parameter, at which origin, our squtions look like monopole. configurations
the change of winding numberoccurs, as can be viewed in I/vhose magnetic charge has beZqu renormahzed, as' suggested
the second graph where the second derivativéofvith [33], where the constant-1kg is also integrated in this
respect tor is plotted. manner.

It is important to notice that our version of generalized
non-Abelian Born-Infeld theory is quite different from the
symmetrized trace prescription. Nevertheless, the nonpoly-
nomial character of the Lagrangian, common to all generali-
zations, still ensures a very rich spectrum of solutions, al- We wish to express our thanks to M. Dubois-Violette, D.
though very different and specific to the choice of theV. Gal'tsov, Y. Georgelin, and C. Schmit for many enlight-
Lagrangian. All our solutions tend to the genuine vacuumening comments.
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