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We present a new non-Abelian generalization of the Born-Infeld Lagrangian. It is based on the observation
that the basic quantity defining it is the generalized volume element, computed as the determinant of a linear
combination of metric and Maxwell tensors. We propose to extend the notion of the determinant to the tensor
product of space-time and a matrix representation of the gauge group. We compute such a Lagrangian explic-
itly in the case of theSU(2) gauge group and then explore the properties of static, spherically symmetric
solutions in this model. We have found a one-parameter family of finite energy solutions. In the last section, the
main properties of these solutions are displayed and discussed.
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I. INTRODUCTION

Recently there has been rising interest in the Born-Inf
nonlinear theory of electromagnetism@1,2# and more genera
Lagrangians of this type, which appear quite naturally
string theories. Non-Abelian generalizations of a Born-Infe
type Lagrangian were proposed by Hagiwara in 1981@3#,
and more recently, including a supersymmetric version,
Schaposnik and co-workers~see @4–6# and the reference
within!. In @7# we analyzed one of the possible non-Abeli
generalizations of the Born-Infeld Lagrangian, and show
the existence of sphaleronlike solutions with a qualitat
behavior similar to the solutions of the combined Einste
Yang-Mills field equations found by Bartnik and McKinno
@8#. The non-Abelian generalization proposed in@7# was
quite straightforward indeed: it consisted in the replacem
of the electromagnetic field invariants

FmnFmn and * FlrFlr5
1

2
emnlrFmnFlr

by similar expressions formed by taking the traces of co
sponding Lorentz invariants in the Lie algebra space:

gabF
a mnFmn

b and gab* Fa lrFlr
b 5

1

2
gabe

mnlrFmn
a Flr

b .

However, except for a straightforward analogy, this expr
sion does not seem to come from any more fundame
theory. In addition, this generalization still keeps a particu
dependence on second-order invariants of the field ten
characteristic for afour-dimensionalmanifold only; in higher
dimensions the determinant would lead quite naturally
0556-2821/2003/68~12!/125003~10!/$20.00 68 1250
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Lagrangians depending on higher-order invariants of
field tensor, too. On the other hand, it is well known tha
correct mathematical formulation of gauge theories consid
the gauge field tensor associated with a compact and s
simple gauge groupG as a connection one-form in a princ
pal fiber bundle over Minkowskian space-time, with valu
in AG , the Lie algebra ofG. In local coordinates we have

A5Am
a dxmLa ~1!

whereLa , a51,2, . . . ,N5dim(G), is the basis of the ad
joint representation ofAG . In many cases another represe
tation must be chosen, especially when the gauge fields
supposed to interact with spinors~cf. @9–11#!. It is always
possible to embed the Lie algebra in an enveloping asso
tive algebra, and to use the tensor product

A5Am
a dxm

^ Ta , ~2!

whereTa is the basis of the matrix representation ofAG , so
that now the non-Abelian field tensor will have its values
the enveloping algebra:

F5dA1
1

2
@A,A#5~Fmn

a dxm`dxn! ^ Ta . ~3!

Now, in order to reproduce as closely as possible the cla
cal Born-Infeld Lagrangian, a natural idea is to embed
space-time metric tensorgmn also into the enveloping alge
bra, tensoring it simply with the unit element in the appr
priate matrix space, i.e., replacing it bygmn ^ 1N ; then we
can add up the metric and the field tensors and take
determinant in the resulting matrix space. This structure
the matrix is similar to the structures found in certain re
©2003 The American Physical Society03-1
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SERIÉ, MASSON, AND KERNER PHYSICAL REVIEW D68, 125003 ~2003!
izations of gauge theory in noncommutative matrix geo
etries @12#, or in Lagrangians found in matrix theorie
@13,14#. Such a Lagrangian has been proposed by Park@15#
and reads as follows:

SPark@F,g#

5E
R4

a S U det
M^ R

(gmn ^ 1dR
1b21Fmn

a
^ Ta)U1/2dR2Augu D ,

~4!

where a and b are real positive constants. The 2dR-order
root is introduced to ensure the invariance of the result
action under the diffeomorphisms. As a matter of fact, w
the root of this order we are able to factorize out the us
four-dimensional volume elementAugud4x and rewrite the
action principle with the subsequent scalar quantity:

LPark~F,g!5a S U det
M^ R

(143dR
1b21F̂)U1/2dR21D ~5!

and

SPark@F,g#5E
R4

LPark~F,g!Augud4x, ~6!

where

F̂5
1

2
Fmn

a M̂mn
^ Ta , ~M̂mn!s

r 5grr8dr8s
mn , ~7!

F̂ is an endomorphism ofR4
^ CdR, andMmn denote the gen-

erators of the Lorentz group~in the defining representation!.
It is also useful to introduce the notation

F̂a5
1

2
Fmn

a M̂mn. ~8!

The generalization of the Born-Infeld~BI! Lagrangian
proposed in this paper results in a variational principle t
leads to a highly nonlinear system of field equations, wh
general properties can be analyzed using standard techn
@16–18#. Our aim in this article is to check whether statio
ary regular solutions with finite energy can be found as
@7#. We consider the standard ’t Hooft monopole ansa
which in this particular case leads to one ordinary differen
equation for a single functionk(r ) of radial coordinater. The
structure of this equation is similar to the one found in@7#,
with a more complicated term corresponding to frictio
Nevertheless, the structure of solutions and their ene
spectrum are very different, as shown in the last section
our article. We have not found solutions joining together t
different vacuum configurations~called BIsphalerons!, as in
@7#. We find instead a family of solutions labeled by integ
winding numbern, and a real parameter bounded from b
low. The energy integral tends withn→` to the energy of
the BI magnetic monopole obtained in@7#.
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II. NON-ABELIAN GENERALIZATION OF BORN-INFELD
LAGRANGIAN

A. Basic properties of the Abelian case

Let us recall several basic properties of the Abelian Bo
Infeld Lagrangian, which we would like to reproduce in th
proposed non-Abelian generalization. In their original pap
@1#, Born and Infeld considered the now famous least act
principle:

SBI@g,F#

5E
R4

LBI~g,F !5E
R4

LBI~g,F !Augud4x

5E
R4

b2~Audet~gmn!u2Audet~gmn1b21Fmn!u!d4x

5E
R4

b2S12A11
1

b2
~F,F !2

1

4b4
~F,!F !2DAugud4x

5E
R4

b2S12A11
1

b2
~BW 22EW 2!2

1

b4
~EW .BW !2DAugud4x,

~9!

whered4x5dx0`dx1`dx2`dx3, BW is the magnetic field,
EW is the electric field, (F,F)5 1

2 FmnFmn, (F,!F)
5 1

4 emnrsFmnFrs , andemnrs5(1/Augu)d0123
mnrs .

This action can be defined not only on the Minkowski
space-time but also on any locally Lorentzian curved ma
fold, as in the original case. It is useful to recall here thr
important properties of the Born-Infeld Lagrangian, whi
we want to maintain in the case of the non-Abelian gener
zation, also valid in any finite dimension of space-time.

~1! Maxwell’s theory ~or, respectively, the usual gaug
theory with quadratic Lagrangian density! should be found in
the limit b→`:

SBI52E
R4

1

2
~F,F !Augud4x1oS 1

b2D
52

1

2ER4
F`!F1oS 1

b2D
52E

R4

1

2
~BW 22EW 2!Augud4x1oS 1

b2D . ~10!

~2! There exists an upper limit for the electric field inte
sity, equal tob when there the magnetic component of t
field vanishes:

LBIuB505b2~12A12b22EW 2!. ~11!

Due to this fact, the energy of a pointlike charge is finite, a
the field remains finite even at the origin. This was the m
3-2
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NON-ABELIAN GENERALIZATION OF BORN-INFELD . . . PHYSICAL REVIEW D68, 125003 ~2003!
goal pursued by Mie@2#, suggesting the choice of nonlinea
generalization of Maxwell’s theory. Indeed, one has for
point chargee,

EW 5
er̂

Ae21r 4
, Energy5E

0

`S Ae21r 4

r 2
21D r 2dr,`.

~12!

~3! The Born-Infeld action principle is invariant under th
diffeomorphisms ofR4. In this respect, this theory can b
viewed as a covariant generalization~in the sense of genera
relativity! of Mie’s theory, as well as an extension of th
usual volume elementAugud4x.

It is also well known that the Born-Infeld electromagn
tism has good causality properties~no birefringence
and no shock waves! as well as interesting dual sym
metries~electric-magnetic duality, Legendre duality, cf.@19–
21,18,22#!. Here we shall not consider these aspects of
theory, our main interest being focused on static solution

B. The new non-Abelian generalization

Our starting point is the gauge field tensor associated w
a compact and semisimple gauge groupG, defined as a con
nection one-form in the principal fiber bundle ov
Minkowskian space-time, with its values inAG , the Lie al-
gebra ofG. As explained in the Introduction, we chose t
representation of the connection in the tensorial product
matrix representation of the Lie algebraAG and the Grass-
mann algebra of forms overM4:

A5Am
a dxm

^ Ta , ~13!

whereTa , a51,2, . . . ,N5dim(G), are anti-Hermitian ma-
trices which form a basis of the particular representationR of
dimensiondR of AG , specified later on.

By analogy with the Abelian case, we want the Lagran
ian to satisfy the following properties:

~1! One should find the usual Yang-Mills theory in th
limit b→`.

~2! The ~non-Abelian! analogue of the electric field
strength should be bounded from above when the magn
components vanish.@To satisfy this particular constraint, w
must ensure that the polynomial expression under the
should start with terms 12b22(EW a)21••• whenBW a50.#

~3! The action should be invariant under the diffeomo
phisms ofR4.

~4! The action has to be real.
This enables us to introduce the following generalizat

of the Born-Infeld Lagrangian density for a non-Abelia
gauge field:

L5AgL

5Augu2udet~12^ gmn ^ 1dR
1b21J^ Fmn

a
^ Ta!u1/4dR.

~14!

In the expression above,J denotes aSL(2,C) matrix satisfy-
ing J25212, thus introducing a quasicomplex structur
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This extra doubling of tensor space is necessary in orde
ensure that the resulting Lagrangian is real. We are left w
the root of order 4dR , so that the invariance of our actio
under the space-time diffeomorphism is preserved.

Let us recall a few arguments in favor of this constructio
The simplest way to generalize the Born-Infeld acti

principle to the non-Abelian case seems at first glance
substitution of real numbers by corresponding Hermitian
erators, as in quantum mechanics or in noncommutative
ometry. Then one would arrive at the following expressio

~15!

where 1dR
and iTa are Hermitian matrices. What remain

now to make the generalization complete is to extend
notion of the determinant taken over the space-time indi
in the usual case. We propose to replace the determinant
434 matrix~denoted hereafter detM) by a determinant taken
in the tensor product of space-time and matrix indices of
representationR ~denoted hereafter detM^ R). Notice that this
kind of tensor product of algebras appears in the contex
the noncommutative geometry of matrices~see@12–14#!. In-
deed, the general structure of the connection one-form
these noncommutative geometries is very similar to the
in Eq. ~13!.

In this kind of generalization, one would replace the o
jects in Eq.~9! following the procedures in Eq.~15!. This
leads to a complex Lagrangian in the case of a non-Abe
structure group. Indeed, the determinant detM^ R(gmn ^ 1dR

1b21Fmn
a

^ iTa) is not real when dim(AG).1. Therefore
we must find a different generalization.

Another possibility would consist of taking ant
Hermitian generators tensorized with the fieldF. This was
proposed by Hagiwara@3# and studied in more detail by Par
@15# for the Euclidean case. This substitution leads to a
grangian satisfying the requirements~1!, ~3!, and~4!, but not
~2! ~for details, see the article by Park@15#!.

Moreover, Lagrangians obtained with the above choi
display invariants of order 3 in the fieldF, destroying the
charge conjugation invariance of the theory,F°2F, and
possibly leading to indefinite energy densities.

This is why we propose a third choice. We start from
alternative formulation of the Abelian version. As a matter
fact, one can write the Abelian Born-Infeld Lagrangian in t
following alternative form:

SBI@F,g#

5E
R4

b2SAugu2U det
C2

^ M
~12^ gmn1b21J^ iF mn!1/4Dd4x,

~16!

whereJ is a 232 complex matrix whose square is equal
212. The Lagrangian is independent of the choice ofJ as
can be easily seen. In Eq.~16! @see also Eq.~15!#, the imagi-
nary uniti can be considered as the anti-Hermitian genera
of u(1). In ourformula ~16!, we use an obvious notation fo
3-3
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SERIÉ, MASSON, AND KERNER PHYSICAL REVIEW D68, 125003 ~2003!
the space on which the determinant is defined. With the
respondence displayed in Eq.~15!, we end up with the fol-
lowing action principle:

S@F,g#5E
R4

a SAugu2U det
C2

^ M^ R
~12^ gmn ^ 1dR

1b21J^ Fmn
a

^ Ta!U1/4dRDd4x, ~17!

satisfying all the requirements we asked for,~1!, ~2!, ~3!, and
~4!, by takingJ in SL(2,C). The Lagrangian is again inde
pendent of the choice ofJ. In particular, we find the usua
Abelian Lagrangian if we replaceTa by i and setdR51.

It was supposed in Eq.~17! thata andb are real positive
constants. It is clear that only the root of degree 4dR will
lead to an expression whereAg can be factorized out as a
overall factor. This enables one to rewrite the action usin
purely scalar quantity as follows:

L~g,F !5a S 12U det
C2

^ M^ R
~12^ 143dR

1b21J^ F̂ !U1/4dRD ,
~18!

so that

S@g,F#5E
R4

L~g,F !Augud4x, ~19!

whereF̂5 1
2 Fmn

a M̂mn
^ Ta as defined in the Introduction.

III. EXPLICIT COMPUTATION OF THE DETERMINANT

A. General remarks

The determinant defined in Eq.~18! can be written in
several equivalent forms:

det
C2

^ M^ R
~12^ 11b21J^ F̂ ! ~20a!

5 det
C2

^ M^ R
~s^ 11b21sJ^ F̂ ! ~20b!

5 det
M^ R

~11b22F̂2!, ~20c!

where s and J are elements ofSL(2,C), J satisfying
J2521. For example, choosings5 is2 and sJ52 is3 in
~20b!, we get the following determinant:

U2 ib21F̂ 1

21 ib21F̂
U

5ugu22dRU2 ib21Fmn
a

^ Ta gmn ^ 1

2gmn ^ 1 ib21Fmn
a

^ Ta
U,

~21!

which is a straightforward generalization of the determin
considered by Schuller@23#. Following Schuller’s idea, the
matrix ~21! in the Abelian case can be interpreted as
matrix defining commutation relations between the coor
12500
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nates in the phase space of a relativistic point particle m
mally coupled to the Born-Infeld field. Similarly, we ca
extend this interpretation to the case of coordinates tak
their values in an appropriate Lie algebra, i.e., by impos
the following relations:

@Xm ,Xn#52
1

eb2
Fmn

a
^ Ta ,

@Xm ,Pn#52 igmn ^ 1, ~22!

@Pm ,Pn#5eFmn
a

^ Ta ,

with

XmªXm
a

^ 2 iTa , PmªPm
a

^ 2 iTa . ~23!

On the other hand, the particular form~20c! enables us to
check that the Lagrangian is indeed real, and at the s
time it represents an obvious generalization of the Abel
Born-Infeld action in the form given in@23#, and the refer-
ences therein. It is worthwhile to note that if one chooseJ
52 is3 in ~20a! the determinant can be written as an abs
lute value of a complex number. Indeed, one has

U12 ib21F̂ 0

0 11 ib21F̂
U5U det

M^ R
~12 ib21F̂ !U2. ~24!

We shall use this particular form of the determinant in t
subsequent computations.

B. Comparison with the symmetric trace prescription

Let us recall a useful formula relating the determinant o
linear operatorM to traces:

@det~11M !#b

5exp$b tr@ log~11M !#%

5 (
n50

`

(
a5(a1 , . . . ,an)

P[Sn]

~21!n)
p51

n
1

ap! S 2
b tr~M p!

p D ap

,

~25!

whereaP@Sn# and@Sn# is the set of equivalence classes
the permutation group of ordern. The multi-indexa is given
by a Ferrer-Young diagram or equivalently satisfies
relation
3-4
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(
p51

n

pap5n, ap>0. ~26!

Using this trace formula, we can develop our Lagrang
up to any order inF. In order to avoid ambiguities, we shal
denote by trM the trace taken over the space-time indices,
ila
e

cr

o-
rd
n
e
i

12500
n

y

trR the trace over the representation indices, and by tr^ the
trace over the tensor product of these two spaces. For
sake of simplicity, we have absorbed the scale factorb21 in
the definition of the field tensorF. When needed, the appro
priate powers ofb21 can easily be recovered. Followin
~20c!, we have,
S det
M^ R

(11F̂2) D 1/4dR5 (
n50

`

(
a5(a1 , . . . ,an)

~21!n)
k51

n 1

ak!
S 2tr^~ F̂2k!

4dR3k
D ak

5 (
n50

`

(
a5(a1 , . . . ,an)

~21!n)
k51

n 1

ak!
)
m51
akÞ0

ak S 2
trM~ F̂a1

m
•••F̂a2k

m
!

4k

trR~Ta1
m•••Ta2k

m !

dR
D , ~27!

whereaP@Sn# satisfies(k51
n kak5n.

We can compare the resulting expansion with the symmetrized trace prescription given by Tseytlin in@24#. With the
notation adopted above, we have

1
dR

StrRSdet
M

~11 i F̂ aTa! D 1/25
1
dR

StrRS det
M

(11F̂aF̂bTaTbD 1/4

5
1

dR
StrR(

n50

`

(
a5(a1 , . . . ,an)

~21!n)
k51

n
1

ak!
S 2

trM~ F̂a1
•••F̂a2k!

4k
Ta1

•••Ta2k
D ak

5 (
n50

`

(
a5(a1 , . . . ,an)

~21!nF )
k51

n
1

ak!
)
m51
akÞ0

ak S 2
trM~ F̂a1

m
•••F̂a2k

m
!

4k
D 1

dR
StrRS )

k51

n

)
m51

ak

Ta
1
m•••Ta

2k
m D G .

~28!
Now we can easily compare the series resulting from sim
expansions of two different Lagrangians: the symmetriz
trace prescription, and the generalized determinant pres
tion, i.e., comparing Eqs.~27! and~28! with the correspond-
ing expansion of the Abelian version of Born-Infeld electr
dynamics. In both cases, the third-order and higher odd-o
invariants that are possible in a non-Abelian case do
appear~as they are absent in the Abelian version, of cours!.

Let us compare, up to the fourth order, the expansion
powers ofF of the two Lagrangians. Our Lagrangian~17!
yields the following series:

L@F,g#.2
1

4dR
tr^ F̂21

1

8dR
tr^ F̂42

1

32dR
2 ~ tr^ F̂2!2

.2
1

2
~Fa,Fb!Kab1

1

8
~Fa,Fb!~Fc,Fd!

3~2KabKcd1Kabcd1Kacbd!

1
1

8
~Fa,!Fb!~Fc,!Fd!Kacbd, ~29!

whereas the symmetrized trace prescription of@24# gives
r
d
ip-

er
ot

n

Lsym@F,g#5
1
dR

StrRS 12Adet
M

~11 i F̂ ! D

.
1

dR
StrRS 2

1

4
trMF̂21

1

8
trMF42

1

32
~ trMF̂2!2D

.2
1

2
~Fa,Fb!Kab1

1

8
@~Fa,Fb!~Fc,Fd!

1~Fa,!Fb!~Fc,!Fd!#K $abcd% , ~30!

with K $abcd%5
1
3 (KabKcd1KacKbd1KadKbc1

1
4 Sab

e Scde

1 1
4 Sac

e Sbde1
1
4 Sad

e Sbce). As usual we note that

TaTb52gab11
1

2
Cab

c Tc1
i

2
Sab

c Tc , ~31!

wheregab5(cR /dR)dab , Scab5gcdSab
d is completely sym-

metric and real,Ccab5gcdCab
d is completely antisymmetric

and real, and
3-5
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Ka1••• an
5

~21! [n/2]

dR
trR~Ta1

•••Tan
!. ~32!

C. Explicit calculus for GÄSU„2…

We use the fundamental representation ofG5SU(2),
with generators defined byTa52( i /2)sa . In order to sim-
plify the calculus, we have rescaled the formula~24! replac-
ing b by 1/2, so that it compensates the factor 1/2 in
definition ofTa . It is useful to note that in the formula~24!,
the expression detM^ R(12 ib21F̂) is a perfect square~as
noticed already in@15#!. As a matter of fact, one can multipl
this determinant by 15detM^ R(1^ 2 is2), to obtain

det
M^ R

~122i F̂ !5 det
M^ R

@1^ ~2 is2!1F̂a
^ ~ is2sa!# ~33!

5ugu22 det
M^ R

@gmn ^ ~2 is2!1Fmn
a

^ ~ is2sa!#.

~34!

It is easily seen that the matrix in the last expression
antisymmetric, so its determinant is a perfect square. T
implies that the highest power ofF in the expansion of

exp@ 1
2 tr log(112iF̂)# is 4; therefore

det
M^ R

~112i F̂ !5FexpS 1
2

tr log~11 i F̂ ! D G2

~35!

5H 11
1

2
tr^ S F̂2

2
D 2 i

1

2
tr^ S F̂3

3
D 2

1

2
tr^ S F̂4

4
D

1
1

2!
F1

2
tr^ S F̂2

2
D G2J 2

~36!

5S 11
t2

4
2 i

t3

6
2

t4

8
1

t2
2

32D
2

, ~37!

wheret i5tr^@(F̂) i #.
Using formula~24!, we get

L512A4 ~112P2Q2!21~2K3!2, ~38!

where

2P5
1

4
t25~Fa,Fa!,

Q25
1

8
t42

1

32
t2
25

1

4
~Fa,!Fb!~Fc,!Fd!Kacbd, ~39!

K352
1

12
t35

1

6
eabctrM~ F̂aF̂bF̂c!.

It is also interesting to note that our Lagrangian depe
exclusively on three invariants ofF ~the third-order invariant
entering via its square!, although the determinant can lead
expressions up to the eighth order inF. In this particular
case, there exist many relations between the traces, so
12500
e

s
is

s

hat

the complicated expressions can finally be simplified a
expressed as functions of three invariants only, even tho
there are eight for a generalSU(2) Lagrangian~cf. @25,26#!.

IV. SPHERICALLY SYMMETRIC STATIC
CONFIGURATIONS

A. The magnetic ansatz and equations of motion

Our aim now is to study static, spherically symmetric s
lutions of purely ‘‘magnetic’’ type. They are given by th
so-called ’t Hooft–Polyakov ansatz@27#:

A5
12k~r !

2
UdU21 with U5eipTr

5@12k~r !#@Tr ,dTr #

5@12k~r !#~Tu sinudw2Twdu!

5
12k~r !

r 2
~rW`TW !•dxW , ~40!

where the usual notation is used. When expressed in com
nents, the same formula becomes

Ak
a5

@12k~r !#

r 2
ea

kmxm, ~41!

where

a,b,c, . . . 51,2,3; i , j ,k, . . . ,51,2,3; ea
km5eai jgikgjm .

The notion of spherical symmetry for gauge potentials
Yang-Mills theory has been analyzed by Forgacs and Man
in @28#; see also@29#. The most general form for a spher
cally symmetricSU(2) gauge potential is often called ‘‘th
Witten ansatz’’ ~cf. @30#!; an exhaustive discussion of it
properties can be found in@31#. When this form of potential
is chosen, there remains a residualU(1) symmetry preserv-
ing the field, and the situation can be interpreted as an A
lian gauge theory on two-dimensional de Sitter spa
coupled to a complex scalar fieldw with a Higgs-like poten-
tial. Then the problem is parametrized by four real functio
a0 , a1 , Re(w), and Im(w) ~we use the notation introduce
in @31#!. Fixing the gauge enables one to seta150. Next,
one can eliminatea0 if one restrain the solutions to th
‘‘magnetic’’ type only. In the static case, the remaining equ
tions of motion possesses a first integral@due to the residua
global U(1) symmetry#. The condition that the energy mus
be finite at infinity forces it to vanish in this case. This mea
that we can choose the phase of the functionw at will, thus
reducing the form of the potential to the one proposed
’t Hooft in 1974 @27#.

Therefore, the only nonvanishing components of the c
vatureF can be identified as the ‘‘magnetic’’ components
the Yang-Mills field:
3-6
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Bi
a5

1

er2
@ r̂ i r̂

a~12k2!2rk8Pi
a#, ~42!

where r̂ i5xi /r and Pi
a5d i

a2 r̂ ar̂ i is the projection operato
onto the subspace perpendicular to the radial direction.

The only nonvanishing invariants of the field appearing
the Lagrangian density can now be expressed by mean
the spherical variabler, one unknown real functionk(r ), and
its first derivativek8(r ):

2P5
1

r 4
@~12k2!212~rk8!2#,

K35
1

r 6
@~12k2!~rk8!2#, ~43!

Q250.

Then the action takes on the following form:

S5E F12H S 11
~12k2!212~rk8!2

r 4 D 2

1
4

r 12
~12k2!2~rk8!4J 1/4G r 2dr. ~44!
,

ju

a

in

n

e

he
an

n

12500
of

For the subsequent analysis, it is very useful to change
independent variable by introducing its logarithmt5 log(r).
Then the action can be expressed as follows:

S5E ~12A4 A !e3tdt, ~45!

where

A5~11a212b!214a2b25~11a2!@~112b!21a2#,

a5~12k2!/r 2,

b5 k̇2/r 4.

Now the equation of motion can be written as

Ak1Ak̇S 3

4

Ȧ

A
23D 2

d

dt
Ak̇50, ~46!

or equivalently, in a more standard form,

k̇5u,

u̇5g~k,u,t!u1k~k221!, ~47!

with
g~k,u,t!5122
u212uk~12k2!1~12k2!2

r 41~12k2!2
1

6u~12k2!@ku212u~12k2!1k~12k2!2#@r 412u21~12k2!2#

@r 41~12k2!2#@~r 412u2!21~12k2!2~r 416u2!#
.

~48!
f
ite
e
-

a

r

The coefficientg, which plays the role of dynamic friction
is quite similar to the one found in@7# ~except for a missing
factor 2, due to a printing error!. In the usual Yang-Mills
theory with the same ansatz, the corresponding factor is
gY M51.

The system~47! is not autonomous~i.e., some of the co-
efficients depend explicitly on the variablet), so that the
qualitative analysis of solutions should be performed in
extended three-dimensional phase space (t,k,u) ~see, for ex-
ample,@32#!. Of course, one cannot expect to find true s
gular points, because the ‘‘time’’ variablet never stands still.
Instead, one can find asymptotic behaviors of the functiok
whose dominant terms fort→2` (r→0) or for t→` (r
→`) satisfy the equations of motion up to a required ord
neglecting infinitely small terms. However, forr→` there
are two genuine fixed points (k51,u50) and (k521,u
50). Having found these asymptotic expansions, we t
try to extend them from both sides so that they can meet
produce a regular solution valid for all values oft.

Although our equations display asymptotic expansio
analogous to those found in@33,34,7#, careful analysis shows
that solutions of the Bartnik-McKinnon type@8# are excluded
here.
st

n

-

r,

n
d

s

B. Asymptotic expansions

We have found two expansions in positive powers or
which satisfy the equations of motion up to a certain fin
order in r near r 50. The first one depends on two fre
parametersk0 and a, and starts with the following expres
sions:

k5k01ar2k0S 5a2

6g
1

g

12a2D r 2

1
a8~52270g!29a4g31~g21!g4

108a5g2
r 31O~r 4!,

~49!

whereg512k0
2, aÞ0, andgÞ0. This expansion displays

certain similarity with the expressions found in@33,34#,
which depend on the same parameterk0.

The second one depends on only one free parameteb,
and starts as follows:
3-7
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k56S 12br21
3b2192b41608b6

101200b211600b4
r 41O~r 6!D .

~50!

Near r 5`, the Taylor expansion can be made with r
spect tor 21. It depends on one free parameter, denoted bc:

k56F12
c

r
1

3c2

4r 2
1OS 1

r 3D G . ~51!

FIG. 1. Plots of solutions for the parameterstc523,1.2,
4,7,10.
iv
ar

t
u

la
t

12500
-

It is remarkable that the asymptotic behavior atr 5` is the
same here@up to the orderO(r 27)] as the corresponding
behavior of the spherically symmetric static ansatz in
usual Yang-Mills theory, which makes it easier to interp
the characteristic integrals as magnetic charge, energy, e

Taking these expansions as the first approximation ei
at r 50 or atr 5`, we then use standard techniques in ord
to generate solutions valid everywhere. It is interesting
note that, when we started from infinity, no fine-tuning w
necessary, and an arbitrarily fixed constantc would lead to a
solution which, when extrapolated tor 50, would define a
particular pair of values of constantsk0 anda. On the con-
trary, starting fromr 50, arbitrarily chosen values ofk0 and
a would not necessarily lead to good extrapolation atr
5`. We shall discuss the properties of numerical solutio
so obtained in the following subsection.

C. Numerical solutions

The search for numerical solutions was based on the s
method as in@33,34,7#. With the expansions~49! and ~51!,
we evaluate the initial conditions used as starting point
the numerical integration of Eq.~47!.

The three parameters occurring in the asymptotic exp
sions~two at r 50 and one atr 5`) are interrelated by two
constraint equalities, therefore the solutions can be labe
by only one real parameter. We chose to index the soluti
with the parameterc of Eq. ~51!, with c.0, or its logarithm
tc5 log(c).

As in the Bartnik-McKinnon case, we can assign to ea
solution an integern, with n21 denoting the number o
zeros of the functionu or the winding number of the corre
sponding trajectory in the phase plane (k,u), as seen in Fig.
1, where a few solutions are plotted. When the parametetc
goes from2` to 1`, we observe that this integern grows
from 1 to `. At certain special values of the parametertc ,
this integer increases by 1. Here are the first critical value
tc :
tc 1.658 4.781 7.510 10.092 13.218 16.530 19.813
n

f
-

rgy
ical
The two graphs in Fig. 1 should be combined in order to g
a correct representation of the trajectories as they appe
the extended three-dimensional phase space including
variable t5 log r. The graph on the left represents the c
k,t, and the graph on the right represent the cutk,u, i.e., the
usual phase space of the functionk(r ) and its first derivative

u5 k̇. One can see some trajectories on the planek,u with
various winding numbers.

Our solutions do not interpolate between the two singu
points atk51 andk521, but between the singular point a
k51 for r 5` and a certain valuek0 ~related totc) which is
e
in

he
t

r

always lower than 1 and bigger than21 ~as a matter of fact
k050 is a solution!. This is radically different from the
sphaleronlike solutions or solutions of Bartnik-McKinno
type found in@8,7#.

The two parametersk0 anda of Eq. ~49! are functions of
the parametertc . We have evaluated the energyE of the
solutions and the values of the parameterk0 for tc varying
from 210 to 20. The energyE is represented as a function o
the parametertc in Fig. 2. This figure represents two en
largements of the upper graph with the precision of 1022 in
order to show local minima of the energy curve. The ene
minima of each class of solutions are found near the crit
3-8
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values of the parametertc , and as far as we can judge, give
the precision of numerical calculus employed, coincide w
their positions on thetc axis. Supposing that the solution
attaining local minima of energy are stable, we conject
that these most stable solutions can be grouped in cou
with winding numbersn andn11, starting with the couple
n51,n52. The energies converge to the limitEtc5`

5En5`51.23605 . . . , which coincides with the energy o
the pointlike magnetic Born-Infeld monopole computed
@7#.

The last two graphs in Fig. 3 show the specific features
the dependence of the parameterk0 ~the initial value of func-
tion k at r 50) with respect totc . The dependence is smoo
only between the critical values of parametertc , at which
the change of winding numbern occurs, as can be viewed i
the second graph where the second derivative ofk0 with
respect totc is plotted.

It is important to notice that our version of generaliz
non-Abelian Born-Infeld theory is quite different from th
symmetrized trace prescription. Nevertheless, the nonp
nomial character of the Lagrangian, common to all gener
zations, still ensures a very rich spectrum of solutions,
though very different and specific to the choice of t
Lagrangian. All our solutions tend to the genuine vacu

FIG. 2. Energy as function of the parametertc , with local
minima visible~the magnification is 100 times higher for the seco
minimum display!.
. B

e

12500
h

e
es,

f

y-
i-
l-

configuration atr→`, but their behavior near the originr
50 is very different from the sphaleronlike solutions. At th
origin, our solutions look like monopole configuration
whose magnetic charge has been renormalized, as sugg
in @33#, where the constant 12k0

2 is also integrated in this
manner.
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FIG. 3. k0 as a function oftc , and its second derivative. Th
singularities of the second derivatived2k0 /dtc

2 occur at values of
tc that coincide with the change of winding numbern.
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