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Abstract 

In this paper we investigate some aspects of the noncommutative differential geometry based 
on derivations of the algebra of endomorphisms of an oriented complex hermitian vector bundle. 
We relate it, in a natural way, to the geometry of the underlying principal bundle, we introduce on 
it a notion of metric and we study the cohomology of its complex of noncommutative differential 
forms. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In [5], it was shown that the noncommutative geometry of the algebra of endomorphisms 

of an oriented complex hermitian vector bundle is very much like the ordinary geometry of 

the associated S U (n)-principal bundle. In particular, from the point of view of connections, 

this noncommutative algebra gives us interesting relations with the canonical Atiyah Lie 

algebroid associated with this oriented vector bundle. 

In this paper, we would like to proceed in the study of the noncommutative differential 

calculus of this endomorphism algebra. In particular, we would like to make closer relations 

with the ordinary geometry of the principal bundle. Using ordinary technics in algebraic 

geometry, we will study the cohomology of this noncommutative differential calculus. 
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The notations we will use in this paper are those of  Dubois-Violette and Masson [5], 

which we recall in the next section, with the main results of  Dubois-Violette and Masson 

[5l. 

2. Notations and useful previous results 

The noncommutative differential calculus based on derivations has been introduced and 

studied in [2,5,6]. For the matrix algebra Mn (C), its complex of differential forms is 

S2l)er(M,,(C)) = M,,(C) ® A s l ( n ,  C)*. The differential d '  is given by the Lie algebra 

structure of s /(n,  C), if we consider this complex as a complex for Lie cohomology with 

values in M,, (C) for the adjoint representation. 

For a matrix-valued functions algebra k~ = C~c(P) ® M,,(C), where P is a manifold, 

there is a canonical decomposit ion ff2Der (~)  = ~ (P)  @ ~2Der(Mn (C)) where ~2 (P )  is the 

ordinary de Rham complex of differential forms on P.  The differential is d + d '  where d is 

the ordinary de Rham differential on a2 (P)  [4]. 

Now, let M be a regular finite-dimensional smooth manifold. We denote by E an oriented 

complex hermitian vector bundle of  rank n over M, by P its SU(n)-principal frame bundle, 

and we introduce, as in [5], the algebra P/ of endomorphisms of  E, which is the set of 

sections of End(E) .  

We denote by (~('2De r (~[), d) the noncommutative differential calculus based on derivations 

associated to 9l. In [5], we proved that we can associate (canonically and in an injective 

way) to any SU(n)-connection on E a noncommutative 1-form c¢ c ~'21er(?l). Locally, on 

an open subset U of M over which E is trivial, any derivation X of el can be decomposed 

as Xloc = X + ad×, with X an ordinary vector field on U and y a traceless matrix-valued 

function on U. In this trivialization, ee can be written as cq,,c(X]oc) = A ( X )  - y where 

A is the local connection 1-form of  the connection on E. In a second trivialization over a 

second open subset U'  of  M, one has Xloc = X + ady,, and on U A U',  one has y '  = 

g--I yg  + g-1 (Xg)  where g : U n U' --+ SU(n)  is the corresponding transition function 

of E [5]. 

3. Some relations between 5"2Der(,~[) and f2(P) 

In this section we would like to give some structure properties of ~Der(?[) which relates 

it to the ordinary differential calculus a2 (P)  of  P.  

Let us denote by be(P)  the (commutative) algebra of  smooth functions on P and by 

A ~ A v the map which sends any A 6 ~u(n) into the associated vertical vector field on P. 

Let us introduce the algebra ~ = be(P)  ® M,,(C) of  matrix-valued functions on P. 

Denote by (~Der(~) ,  d) = ( ~ ( P )  ®/2Der(M,,(C)) ,  d + d ' )  its differential calculus based 

on derivations. It is easy to see that G = {A" + a d A  / A ~ ~u(n)} is a Lie subalgebra of  

De r (~ )  isomorphic to ~u(n). This Lie subalgebra defines a Caftan operation of ~u(n) on 

ff2Der(~), whose basic subalgebra we denote by ~('2Der.Bas(~l). 
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Proposition 1. ff2Der(921) = .f-2Oer.Bas(~ ). 

Proof.  The proof is based on results on noncommutative quotient manifolds we introduced 

and studied in [7]. First, notice that ~[, as a set of  section of an associated bundle of  P,  can 
be considered as the algebra {a E ~ / A V a  + [A, a] = 0 YA 6 ~u(n)}. Now, define as in [7] 

ZDer(P[) = {~ E Der(~)/Y~[ = 0}, 

J~Der(~[) = {~ E D e r ( ~ ) / Y ? l  C ~}. 

Then looking locally (in a trivialization of P)  at the derivations of  ~ ,  one sees that 

Z ( ~ )  = ~ n Z ( ~ ) ,  

Der(?[) = JV'Der(.~l)/ZDer(.~/), 

~.{ = {b E ¢~/~.b = 0 V ~ E ZDer(~[)}, 

where Z(~A) and Z ( ~ )  are the center of the algebras ?~ and ~,  respectively. This makes 

~[ into a noncommutative quotient manifold algebra of ~ in the sense of Masson [7]. In 

order to prove the proposition, using Proposition V. 1 in [7] and the fact that ~-~-Der and ~'2De r 

coincide in this context [5], it remains to show that the Z (~ ) -modu le  induced by J~Der (~/) 
in Der (~)  is Der (~)  itself. As before, using local expressions of  derivations, this can be 

checked easily. [] 

Let us give an interesting example. Consider an S U (n)-connection on P. Denote by to its 
1-form on P. It was shown in [5] that there exists a corresponding noncommutative 1-form 

a' E ff2Der(.~l). From Proposition 1, this form comes from a basic 1-form in -QDer.Bas(~), 

which is nothing but to - i0, where 0 6 ~2~er(Mn (C)) is the canonical 1-form defined in 
[3] by iO(ad×) = F - 1 /n  Tr (y )~  for any y e Mn(C). The basicity of  this 1-form is a 

consequence of  properties of  to and i0, in particular the equivariance of to. 

Now, notice that the commutative algebra .T'(M) of smooth functions on M and its 
de Rham complex $2(M) are the basic subalgebra of  f ( P )  and the basic subcomplex of 
S-2 (P)  for the operation of an(n) induced by A ~ A v. This operation is itself the restriction 

of the operation of ~u(n) considered previously. Then, from this point of  view, ~'2Der(~[ ) is 
a natural generalization of  $2 (M) containing informations on P. 

Moreover, this construction fits perfectly with the notion of noncommutative integration. 
It was shown in [3] that such a notion exists on the noncommutative differential calculus 

o 

.f'2Der(Mn (C)). We denote by to 6 ff2~);rl(Mn (C)) ~ fnc to 6 C this noncommutative 
integral. Recall that it is defined by the following procedure. Let {Ok = ad ie ,  }k= l ..... n 2-  l 

denotes a basis of Der(Mn (C)) ----- s l (n ,  C), where {Ek]k=l ..... n2_l is a basis of hermitean 
(traceless) matrices o f s l ( n ,  C). Denote by {01 ] the dual basis of  {Ok} in s l (n ,  C)*, and gkl = 

1 /n  Tr(Ek El) the natural metric on Der(Mn (C)). Then the noncommutative (n 2 - 1)-form 
~/~01 . . .  0 '72-j is a volume form, where ~ is the square root of the determinant of  the 

_ _  n 2 - - 1  
metric. Any noncommutative (n 2 1)-form to ¢ ~'~Der (Mn(C) )  can be uniquely written 

to ---- M y / g O  1 . .  .0 '72-1 and we define fncto = 1 / n T r ( M ) ,  which can be proven to be 
independant of the choice of  the basis {Ek]. 
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Integrating only the noncommutative part of any noncommutative form on ~, we get a 
map 

f f2  p , n  - 1 
Der (~) ~ S2P(P) 

OO I---'> f 0), 

nc 

which satisfies: 

Proposition 2. 
p , n 2 - 1  

(1) If o9 E S2De r (~) is horizontal (resp. invariant), then fnc oJ E S2P(P) is horizontal 
(resp. invariant) for the two operations defined above. 

(2) Considering basic elements, this map defines a canonical noncommutative integration 
"along the (noncommutative)fiber" ~2Der(?[) ~ ~2 (M). 

(3) This noncommutative integral is compatible with the differentials: 

f ao = d f 
[IC n c  

(4) This induces maps in cohomologies: 

f : Hr(g2Der(~), d) ---+ Hr-(n2-1)(p), 

nc 

f . Hr(~'2Der(~l), d) --+ Hr-(n2-1)(M). 

nc * 

Proof. (1) and (3) are straightforward computations using various properties of the trace 

and the volume form in the definition of the noncommutative integration over  ~(2De r (Mn (C) ), 

and properties of the differentials and the two operations. 

(2) and (4) are immediate consequences of (1) and (3). [] 

The cohomology groups involved in (4) will be described in the Section 6 where some 
results on the cohomology of ~2Der (?1) are given. 

The different relations between the various differential calculi can be summarized in the 
following diagram: 

basic 
elements 

o1¢111¢nI~, 
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4. The local point of view 

It is possible to look at this integration from a local point of  view. Let U be an open subset 

of  a chart of M over which E is trivialized. Denote by (x I . . . . .  x m) some coordinates 

on U. Then the algebra ?l looks locally (restricting elements of  ?l to U) as the algebra 

f ( U )  ® Mn(C). We will use for the matrix part the basis {Ek}, {Ok} and {O k } introduced 

before. Any noncommutative form ~o can be locally decomposed as 

O)loc = ~ ~/ll.-.Izp,kt...kq d x P l  A • • • A d x l ~ P O  kn • • • 0 kq ,  

p , q  

with ~uJ . . ,~ , , k l% c .T'(U) ® M,  (C) and where all the 1-form dx"  and 0 k anticommute 

between themselves. The basis {O k } chosen for the purely noncommutative part is not 

well adapted to study transition relations between two open subsets U and U'  of  M. In 

particular, in this basis, it is impossible to get some tractable transition relations between 

the local matrix-valued functions "o)]d,l,..ll, p.k I ...kq and ~/,~ '",p,.k~ ...kq, defined over U and U',  

respectively. 

There is a better basis defined in the following way. Introduce an S U  (n)-connection on E 

whose local connection 1-forms are A on U and A'  on U'.  Define n 2 - 1 noncommutative 

1-forms on U, with values in the center of  the algebra, by 

Otr = A r _ ior ,  

where A = A r ® Er  on U. The notation Ot" comes from the fact that those 1-forms are 

the local components of  the noncommutative 1-form Ot associated to the connection on E: 

over U, one has Otloc = OtrEr. Because Ot is a well-defined global form, the local 1-forms 

Otr have good transition relations. Denote by g : U N U '  ---> S U ( n )  the transition function 

of  E associated to U and U',  and introduce the n 2 - 1 by n 2 - 1 matrix-valued function G 

by g - I  E k g  = G ~ E I .  Denote by Otr~ the n 2 - 1 noncommutative 1-forms on U '  defined by 

Ot" = A '~ - iO ~ . Then it is easy to show that we have the homogeneous transition relations 

IS Ot = G S r rot 

over U r] U'.  Now, any noncommutative form o) can be locally decomposed over U as 

~ dx tjl A - ' '  A (-Oloc c°/Zl ...IAk,,r I ...rq d x l Z p  o t r l  " " . otFq 
n 

P , q  

where as before, wm. . .up . r  ~ ,,.rq E ~ ( M )  @ Mn(C  ). It is now possible to compute the tran- 

sition relations between the O)l~l...l~p.rl ...rq and o9~ l...j~ / ,r I ...rq," One gets the simple relation 

? 

O)]gl...~l/,,rl...,. q a r l  1 . . .  a /q  -lo9 sq = g lZl . . . lZp,Sl . . . sqg.  

In order to simplify the analysis, we have assumed that we do not need to change the 

local coordinates (x  I . . . . .  x m ) .  Indeed, the relations one would obtain when a change of 

coordinates is performed, are the usual ones. 
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Consider now the particular local (n 2 - 1)-forms 

l o t n  2 -  I 
601o  c = 0!  . . .  

Using the fact that det (G)  = 1, it is easy to see that those local forms can be glued together to 

S2,, 2-1 (?l). Notice that the highest degree in the noncommutative define a global form o0 ~ E D e r  

part does not depend on the connection. This global form plays the role of a noncommutative 

volume lbrm in the sense that any form w c a'2" t'*~ can be written 
D e r ~ , , ,  , 

In this expression, 0 is locally the sum of terms which are not of  bidegree (r - n 2  + l, n 2 _ 1 ) 

or such that their trace are zero. We have trivially that 

f wct = E s~(M). 11 

DC 

To compute the noncommutative integral of  w, one has just  to decompose it locally in the 

form Wloc = Ploco)l% c "b rhoc, with 01oc as before, and take the trace of  Plot. This trace 
¢ 

defines a global ordinary form on M because Ploc defined on U and Ploc defined on U'  

are related by the adjoint representation. The result does not depend on the choice of the 

SU(n)-connection because only the term of  bidegree (0, n 2 - 1) in co d is important. Ioc 

5. Riemannian structure and Hodge operator 

The notion of  riemannian structure we would like to introduce on this noncommutative 

geometry looks very similar to the one that has been defined in [6]. Here, a riemannian 

structure is a symmetric Z(Pl)-bi l inear  mapping 

h : Der(?l) ®z(,.,i) Der(?l) ~ Z(?I) ,  

which is nondegenerate in the sense that the map Der(?l) ~ 52~er(?l) defined by X 

[3; ~-~ h ( X ,  3;)] is injective. We will call h a metric on Der(?l). 

Let us look at h in a local trivialization of E over an open subet U of  M. With ,¥1oc = 

Xa Ol~ + yk adE k and Yloc = YV Ov + ~l adE1, one has 

hloc (A:'loo Yloc) = havXl 'YV + h # X a q  l + hkvy kYv + hklyko/,  

where the ha~,, hal , hkv, hkl are local functions on U. The transition relations between those 

ftmctions are obtained using the transition relations between the local expressions of the 

derivations. Denote by (h rs) the matrix inverse of (hkl). Then the quantities 

A 'I~ = - h r " h r # 
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have the transitions'  relations of  the components of  a local S U ( n ) - c o n n e c t i o n  l - form on 

E,  and the quantities 

k / hum = huv  -- h k l A u A  v 

define a riemannian metric h M on M. A natural candidate for the hkt are 

1 
hkt = - T r ( E k E t ) ,  

n 

which is the natural metric on the noncommutative part. We can associate to the connection 

k the noncommutative 1-form ~, and we can then write the metric h as defined by the A u 

1 
h ( X ,  y )  = h M  ( x ,  Y )  4- - Yr(o~(X)oe(y)). 

n 

This situation is very similar to the one encountered in Kaluza-Kle in  theories. 

We can now look at this metric from a dual point of  view. In this case, this is a bimodule 

map f21er(~[ ) ~?1 ~C2DI er (~][) ~ ~,  defined locally by 

k I Ml~v k l hloc(Ploc, 01oc) = hMUV(PuOv 4- p k A u ~ v  4- P u A v o 1 )  4- Pk(  hkl 4- h A u A v ) r  B, 

where p,  0 6 ~"21er (~) are written locally as P l o c =  Pu dxU 4- Pk iOk and ~loc = q~ dx ~ 4- 
ozi0 z . 

Suppose now that the base { Ek } of  hermitean traceless matrices is orthonormal for the nat- 

ural metric: hkt = 3kt. Then an easy computation show that the n 2 - 1 local noncommutative 

1-form ot r introduced in Section 4 satisfy 

h(etr ,  ors) = ~rs. 

With these forms, it is possible to define a Hodge star operator 

o m + n  2 - 1  - k  /01"~ 
* :  ~'2ker (?1) "--> ~'Der ' - - ' "  

Locally, for Wloc = O0ul.../~p,rl ...rq d x / ~ l  A • • • A d x # P O l  rl • • • ol rq with p 4- q = k, define 

1 ~ O ) p . I . . . t l ~  r l . . . r  Ev 1 ..vmF~s I s (*O))l°c ~- ( - - 1 ) q ( m - P ) p ! q !  ~' q . . . . .  , - - I  

× h M ~ l v l  . . . hM~pvp~rlsi  . . . ¢~rqSq dxVp+l A • • • A d x V ' o t  sq+l • • • ot s''2 i.  

A straightforward computation shows that this formula define a well-global  (m 4- n 2 _ 1 - k)- 

form over 9~, and that the star operator satisfies 

* :~ ~0 = ( - - l ) ( m + n 2 - 1 - ( p + q ) ) ( P + q ) c o .  

This star operator gives rise to a scalar product on noncommutative forms by 

M n c  

One can then define an adjoint operator ~ to ~¢ as usual. A straightforward computation 

shows that ~ = 0 where ot is associated to the Aku. 
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6. Some results on the cohomology of  ,.f'2Der(~[ ) 

149 

In the case when ?l is a tensor product 0~ = ~ ' (M) ® M,(C) ,  the cohomology of  

ff2Der(Pl) = ~ ( M )  ® ~('2De r (Mn ( C ) )  i s  k n o w n  [4] .  It is just the tensor product of  the coho- 
mology of  S'2 (M) (the de Rham cohomology) and the cohomology of ff'2De r (Mn (C)) (we 
will detail this last cohomology in the following). 

In the general case, we will study the cohomology of  I2Oer (?t) using a slight modification 

of standard constructions in algebraic topology [ 1 ]. We will only emphasize the points which 
are different from the standard construction in [ 1 ]. 

Let U be an open subset of  M such that the restriction of  End(E)  to U is trivial. We make 

a choice of trivializations for any such open subset and we denote by ?l (U) the trivialization 
of  the restriction to U of the algebra ?~. Then one has ?1 (U) _~ F ( U )  ® M, (C). Denote by 

guy  : U N V ~ SU(n)  the transition functions. 

Consider now the presheaf f defined by U ~ S2Der(~I(U)) where U is any open subset 

of M which trivializes End(E).  For V C U, the inclusion map is defined to be 

• V 
l U ' ~ 2 D e r ( P l ( U ) )  ~ S '2Der(P[(V))  

o) ~ (~orv) ,~"~ , 

where (o9 W) eu v is the action of  guv  (change of  trivialization) on the restriction of  o) to V. 

If o) = aodal . . .  clap, one has 

O)gUV - I  ^ - 1  ^ - I  = ( g u v a o g u v ) d ( g u v a l g v v ) . . .  d ( g u v a p g v v )  

This action commutes with d. 

Now, let us take a good cover tI = {U~}~E1 of  M indexed by an ordered set I and such 

that over any U~,, End(E)  is trivialized. For convenience, on any U~ ...,~ = U~,~ n .  • • n U~,~ 

the trivialization is chosen to be the restriction of the trivialization of U~q. 

We now define a noncommutative version of the double (~ech~le Rham complex asso- 

ciated with this presheaf. For p > 0 and q > 0, consider the vector spaces 

cP'q(II" ~ = U if2 q [~,3[fl: "~ D e r  ~" ~ f / o . - . ~ p  7 7. 

O' 0 <... <C~/~ 

An element o) E C p'q (H, ~ )  is a collection of  noncommutative q-form in o9,~0...,~" E 

ff~qer ( ~[ ( Uceo...(r/, ))  • 

Define the differential ~ : cn'q(lI ,  f )  --> Cn+J.q(lt, ..--) by 

P 
i : ~ x p + l  g°'P~'p+ I 

(So))c~o...~:,+j = Z ( - 1 )  O)~O...~i_lOQ+l...Olp+ I ~f- t - - I )  O)OtO...Ot p • 
i=0 

Using the properties of  the transition functions it is easy to verify that 6 2 = 0. The noncom- 

mutative differential d is of  degree (0, 1) on this double complex and satisfies d8 = 6d. On 

the total complex of  this double complex, we introduce the differential D = ~ + (-1)Pal,  
with D e = 0. 
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For p = - 1 ,  define C-l'q(lI, 5F) to be ~2qer(?l), and 6 : c-hq(IJ, f ' )  --+ c° 'q  (1I, f ' )  to 

be the restriction map. Then 8 2 = 0 also holds on C -1 'q (11, .T'). 

L e m m a  3. The following sequence is exact: 

0 ~ C_I,.(.~.[,~u) d~ C0, . ( .~[ ,~  ) 6 , CI , . (~[ ,~_ ) 6 . . . .  

Proof.  The exactitude at c - l ' * ( l l ,  f ' )  is trivial. Because 3 2 = 0, one has only to show that 

if w 6 CP'*(ll, f ' ) ,  with &o = 0, then there exists 0 6 Cp-I'*( 1I, f ' )  such that 6~ = co. 

Introduce {p~} a partition of  unity subordinate to the good cover It. For d0 < • .. < C~p_ l, 

define 

gceoCp I 

~O/O.-.~p l = ~I'~ p~CO~O...Cq,, i "]- Z pC~CO~O..-~p i, 

c~-ctO'"°tp 2 

where to simplify this expression, we make use of  the notation co...~ ...,j . . . . .  co-..~i-.-~,-.." 

Note that P,,co,,~0...,~p l c S'2Der(.9[(U~cq)...ap I))" A straightforward computation shows then 
that with ~co = 0, one has Srl = co. [] 

Using general arguments on double complexes, this lemma gives us a noncommutative 

version of  the generalized Mayer-Vietoris principle: 

Corol lary  4. The cohomology of (a'2Der(.91[), d) is the cohomology of the total complex 
(C(ll, f ' ) ,  D). 

Consider now the spectral sequence { Er, dr } associated with the double complex C (11, .T'), 
induced by the filtration 

FP C(ll, ~ )  = @s>p (~q>O cs 'q(H, .T'). 

Then by standard argument, one knows that the first term of  this spectral sequence is 

E( ''q = I-1~ ''q = CP(ll, 7-/q), 

where 7-/q is the presheaf 7-[ q ( U )  = H q (-QDer (-gl(U)), d) and that the second term is 

E ;  "q = H P ( l l ,  ~-~q). 

This spectral sequence converges to H(C(l l ,  5c), D) = H(S2Der(P~), el). 

The cohomology groups H*(~Der(Pl(U)), d) have been computed [2-4]. When U is 
diffeomorphic to N m, one has 

g*(~2Der(Pl(U)) , el) = n*(X'2Der(Mn(e)) , d ' )  

and H*(~Der(Mn(C)), d') is isomorphic to the cohomology of  the Lie algebra ~[(n, C). 

Then H*(f2Der(M, (C)), d ')  = (A~l(n,  C)*)lnv, where Inv denotes the invariant elements 
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for the canonical Lie derivation. This algebra can also be considered as the graded commu- 

tative algebra freely generated by c~,._ I in degree 2r - 1 with r 6 {2, 3 . . . . .  n} and where 

the c~r_ I are the primitive elements of  (A~l(n,  C)*)I,," 
Any element in (A_~[ (n, C)*)~n,' is then invariant by the action of S U (n). So, the inclusion 

map is the identity and then the presheaf 7--/q is a constant presheaf. The cohomology of Ei 
reduces to the Cech cohomology of this constant presheaf. We have then proven: 

P r o p o s i t i o n  5. E2 : H*(M) ® (A6l(n, C)*)ln . 

This proposition is just a variant of the Leray's  theorem for de Rham cohomology (see 
[1]). 

The natural map H*(M) --~ H*(~Der(?l) ,  d) defined by the inclusion f2(M) 
f2Der(?[) is not injective. Indeed, take for example the 4-form T r ( F F )  where F is the 

local expression of the curvature of an SU(n)-connection on E. Then we know that this 

form is closed, and we can write locally T r ( F F )  = dTr (A(dA + ~AA)). We know that 

in ordinary differential geometry, those local Chern-Simon forms do not always define a 
global 3-form on M. But in the noncommutative geometry of ?1, we have a well-defined 

global 3-form Tr(o~(dot + ~o~ot)), where ~ is the noncommutative 1-form defined by the 

connection. This 3-form satisfies 

~ l T r ( ~ ( ~ t c ~ + 3 o l ~ ) ) = T r ( F F )  

because dc~ + ~c~ is exactly the curvature of the connection. So, the class of  T r ( F F )  is not 

always zero in Ha(M) but is always zero in H4($2Der (.~l), d). The situation is obviously the 
same for any other characteristic class of E. This means that the cohomology of f2De r (~1) 

does not see the nontriviality of E. This situation is very similar to that encountered with 

the ordinary cohomology of the associated principal bundle. 

7. C o n c l u s i o n s  

In this paper, we have added a few more arguments to those given in [5], to propose the 
algebra ?l equipped with its noncommutative differential calculus based on derivations as 
a possible replacement of the principal bundle P. Indeed, we have shown that this non- 

commutative geometry of ?l is strongly and very naturally related to the ordinary geometry 
of P. Then ?~ can be used in place of P,  if one replaces the differential calculus f2 (P)  

by f2Der(?[), the connection 1-form co on P by the associated noncommutative 1-form c~ 
introduced in [5] (which is only subjected to a "vertical" condition), the notion of associated 

vector bundle by the notion of (left-)module over ?I. 
From a physical point of view, this noncommutative geometry is more interesting because, 

as was pointed out in [4,5], it contains not only ordinary Yang-Mills fields, but also other 

fields which look very much like Higgs fields. 



152 T. Masson /Journal of Geometry and Physics 31 (1999) 142-152 

Acknowledgements 

We would  like to thank Miche l  Dubois-Viole t te  for very  helpful  discussions and his kind 

interest,  and J im Stasheff  for the discussions we had on the first vers ion o f  this paper. 

References 

[1] R. Bott, L. Tu, Differential Forms in Algebraic Topology, GMT 82, Springer, Berlin, 1982. 
[2] M. Dubois-Violeue, D6rivations et calcul diff6rentiel non commutatif, C.R. Acad. Sci. Pads, vol. 307, 

S6rie I, 1988, pp. 403-408. 
[3] M. Dubois-Violette, R. Kerner, J. Madore, Noncommutative differential geometry of matrix algebras, 

J. Math. Phys. 31 (1990) 316. 
[4] M. Dubois-Violette, R. Kerner, J. Madore, Noncommutative differential geometry and new models of 

gauge theory, J. Math. Phys. 31 (1990) 323. 
[5] M. Dubois-Violette, T. Masson, SU(n)-connections and noncommutative differential geometry, J. Geom. 

Phys. 25 (1,2) (1998) 104. 
[6] M. Dubois-Violette, P.W. Michor, Connections on central bimodules in noncommutative differential 

geometry, J. Geom. Phys. 20 (1996) 218. 
[7] T. Masson, Submanifolds and quotient manifolds in noncommutative geometry, J. Math. Phys. 37 (5) 

(1996) 2484. 


