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Laboratoire de Physique Théorique et Hautes Energies,b)
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A recently proposed definition of a linear connection in noncommutative geometry,
based on a generalized permutation, is used to construct linear connections on
GLq(n). Restrictions on the generalized permutation arising from the stability of
linear connections under involution are discussed. Candidates for generalized per-
mutations on GLq(n) are found. It is shown that, for a given generalized permuta-
tion, there exists one and only one associated linear connection. Properties of the
linear connection are discussed, in particular its bicovariance, torsion, and commu-
tative limit. © 1997 American Institute of Physics. �S0022-2488�97�02506-1�

I. INTRODUCTION

Shortly after their discovery in the context of integrable models,1–4 quantum groups were
identified as interesting noncommutative generalizations of the algebra of functions on a Lie group
manifold.5–7 Noncommutative differential calculi8 have been proposed where the main constraint
is the bicovariance of the differential algebra.9 In addition the R-matrix formulation7 played a key
role in further developments.10–15

The aim of this paper is to define linear connections and metrics on quantum groups. From the
mathematical point of view, this is a step towards the understanding of which classical concepts
can have a noncommutative generalization. From the physical point of view, it could be a first step
towards the formulation of gravitational theories on quantum groups. Noncommutative manifolds
in fact could represent a solution to the problem of short distance divergences of usual quantum
field theories �see, e.g., Refs. 16 and 17� and could also offer a more satisfactory description of
space–time. In this respect, quantum groups are an interesting toy model where qualitative dif-
ferences between the noncommutative (q�1) and the nondeformed (q�1) cases can be ob-
served. In the context of the Dirac-operator-based differential calculus of Connes, an approach to
the construction of such theories has been proposed using the Wodzicki residue of the Dirac
operator.18,19 However, many interesting differential calculi, such as those on quantum groups9
and spaces,20 are not defined by a Dirac operator. Here, as was proposed in Refs. 21–23, we
follow the idea, which is suitable for all differential calculi, of a generalization to the noncom-
mutative context of the usual commutative metrics and linear connections.

A general definition of linear connections, in the context of noncommutative geometry, has
been recently proposed for the derivation-based differential calculus24,25 and other differential
calculi24 in which case the construction relies on a generalized permutation. In Sec. II we fix our
notation concerning quantum groups. In Sec. III we briefly review the construction of Ref. 24 and
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add some restrictions on the generalized permutations which arise from the requirement that the
set of covariant derivatives be stable under complex conjugation. Section IV is devoted to the
search for generalized permutations on GLq(n) which are restricted by the bicovariance condition.
We find a two-parameter family of generalized permutations. In Sec. V we prove that for a given
generalized permutation there exists only one linear connection. Properties of this linear connec-
tion are studied, in particular its bicovariance, torsion, and curvature. Finally, we examine the
commutative limit of our linear connections. We show that the limit of one class of these when
q→1 corresponds to left- and right-invariant linear connections on GL(n). We collect our con-
clusions in Sec. VI.

II. QUANTUM GROUPS AND THEIR BICOVARIANT DIFFERENTIAL CALCULI

The quantum group Fun„GLq(n)… is a Hopf algebra �A,�,�,�� generated, as an algebra, by the
identity and Ti

j , i , j�1,.. .n . An exchange of the order of the generators, while maintaining the
classical Poincaré series, is obtained by the RTT relation7:

RT1T2�T1T2R . �II.1�

Here, R is the R matrix, which is an element of Mn(C)�Mn(C) obeying the Yang–Baxter relation

�1�R ��R�1 ��1�R ���R�1 ��1�R ��R�1 �. �II.2�

The R matrix of GLq(n) is given by4

R�q�
i
Eii�Eii��

i� j
Ei j�E ji���

i� j
Eii�E j j , �II.3�

where ��q�q�1. It satisfies the Hecke condition

�R�q ��R�1/q ��0. �II.4�

The differential calculus on the quantum group is considerably restricted by the bicovariance
condition.9 This means that there exist a right and left coaction of A on �1, the space of
one-forms, such that

�L�adb ����a ��1�d ���b �, �II.5�

�R�adb ����a ��d�1 ���b �, �II.6�

�1� �R��L���L�1 ��R . �II.7�

Under some restrictions on q and the assumption that �1 be generated as a left-module by
dT j

i , bicovariant differential calculi have been classified26 and shown to be obtained by the
constructive method of Jurco.12.

For such differential calculi �1 is generated as a left �or right� module by left-invariant
one-forms � j

i ��L(� j
i )�1� � j

i �:

� j
i���Tk

i �dT j
k . �II.8�

The differential algebra is entirely characterized by the commutation relations

� j
i a��1� f jl

ik���a ��k
l , �II.9�

where f jl
ik are linear functionnals representing the algebra A:
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f jl
ik�1 ��� l

i� j
k , f jl

ik�ab �� f jn
im�a � f ml

nk�b �.

They can be explicitly determined in terms of the R-matrix and some parameters.26 Here we
shall make the choice

f il
jk�Tn

m���R�1� in
sk�R�1�sl

jm �II.10�

for the differential calculus. In the limit q→1, this differential calculus reduces to the usual one on
GL(n). It has been considered in Refs. 11, 15, 14, 27, 28, and 13. In this case, the commutation
relations are often written in the form

T1dT2�RdT1T2R . �II.11�

The space of two-forms is constructed as the image of �1
� A�1 under the ‘‘multiplication’’

map �:

�:�1
� A�1→�1

� A�1, �II.12�

��1�� , �II.13�

where � is a bimodule automorphism, obeying the Yang–Baxter equation, which generalizes the
permutation map of the commutative case. Let � j

i be right-invariant one-forms:

� j
i�Tl

i�k
l ��T j

k�. �II.14�

Then � is determined by9

��� j
i
� � l

k��� l
k

� � j
i . �II.15�

When applied to � j
i
� � l

k , one can show that

��� j
i
� � l

k��� j l mq
ik np�n

m
� �p

q , �II.16�

� j l mq
ik np� f jq

ip„��Tm
k �Tl

n…. �II.17�

When applied to dT1�dT2 , the map � yields

��dT1�dT2��RdT1�dT2R�1. �II.18�

The Hecke relation for the R matrix �II.4�, combined with the previous equation, yields the
following characteristic equation for �:

���1 ����q2����q�2��0. �II.19�

Higher-order forms can be constructed in a similar way using the map �.9 The bicovariant
bimodule � is the direct sum of the space of n forms:

�� � n�
n. �II.20�

It is equipped with an exterior derivative which is defined with the help of the right- and left-
invariant one-form �,

���
q2n�1

� �
i
q�2i� i

i , �II.21�
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by

d���� , �� , �II.22�

where �,� is the graded commutator and the product is in �.
For real values of q or for �q��1, an involution may be defined on GLq(n) reducing it

respectively to Uq(n) or to GLq(n ,R). Setting the q-determinant equal to one gives rise to
SUq(n) and SLq(n ,R).7 The bicovariant differential calculus on these reductions is characterized
either by a larger set of one-forms than the classical case29 or by a modified Leibniz rule.30

III. LINEAR CONNECTIONS IN NONCOMMUTATIVE GEOMETRY

In this section we collect the main definitions and results concerning the general construction
of linear connections as proposed in Ref. 24. We add some new restrictions on the generalized
permutation by imposing the stability of the set of covariant derivatives under complex conjuga-
tion. In the following A is a unital associative algebra over C equipped with the differential
calculus (� ,d).

Definition 3.1: Let � be the multiplication in �. A generalized permutation, �, is a bimodule
automorphism of �1

� A�1 satisfying

������ . �III.1�

A generalized flip, �, is defined as a generalized permutation satisfying �2�1.
Remarks:
�1� Note that ���1 is a generalized flip.
�2� When the algebra A is the algebra of C� functions on a manifold M , the permutation

��� � ������� � �III.2�

is a generalized flip.
�3� When �2 is realized as a subspace of �1

� �1 with an imbedding i verifying ��i
�l�2, then

1�2i�� �III.3�

is a generalized flip. The generalized flip of the derivation-based differential calculus proposed in
Refs. 25 and 24 is of this form, as are the generalized flips of Refs. 31 and 23.

�4� If � is a generalized permutation, then so is ��1 as well as �2n�1 for an arbitrary integer
n .

�5� If � and �� are two generalized permutations, then so is �(��1)���(���1)�1 for all
� and �� in C. The ��1 form a linear space.

Definitions 3.2: A linear connection associated to a generalized permutation �, is a linear
map, “�, from �1 to �1

� A�1 satisfying the two Leibniz rules

“��a���da� ��a“�� , �III.4�

“���a ����� �da ��“��a , �III.5�

for any a�A and any ���1.
Remarks:
�1� When the algebra A is the commutative algebra of smooth functions on a manifold the

only possible linear connections are those associated to the permutation �III.2�.
�2� If � and �� are two generalized permutations, then “��“�� is a left-module homomor-

phism.
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�3� If “ and “� are two linear connections associated to the same generalized permutation,
then their difference is a bimodule homomorphism.

The preceding definition of the linear connection has the advantage of allowing an extension
to the tensor product over A of several copies of �1. This is formulated in the following

Proof: The proof can be carried out by induction. For s�2 an identification of “�(� f
� ��) with “�(� � f��), where f is an arbitrary element of A and � and �� are one-forms,
gives �2�� �1; so the proposition is true for s�2. Suppose it is true to order s�1 and let �� be
an element of the tensor product of s�1 copies of �1. Then, by the induction hypothesis,

“� f���d f � ��� f“���. �III.8�

The identification of “�(� � f��) with “�(� f � ��) where � is an element of �1 completes the
Proof. �

Suppose that A is an algebra over C equipped with an involution *. Then �1 carries a natural
involution defined by (bda)*�(da*)b*. The involution on �1

� A�1 is not a priori determined.
In fact, if we define the antihomomorphism � by

��� � ������*� �*, �III.9�

and if � is an automorphism of �1
� A�1 such that (���)2�1, then � �� defines an involution

on �1
� A�1. We would like to define an involution on �1

� A�1 which in the commutative
limit reduces to (� � ��)*��(��*� �*), where � is the usual permutation operator, and which
allows us to define the complex conjugate of a linear connection, as in the commutative case, by

“̄���„“���*�…*. �III.10�

The requirement that “̄� be a linear connection imposes constraints on the involution on �1

� A�1 and on the generalized permutation, �:
Proposition 3.4: Suppose that A is equipped with an involution *. Then the following asser-

tions are equivalent:
�1� The map “̄� defined in (III.10) is a linear connection.
�2� The generalized permutation, �, verifies
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�����2�1 �III.11�

and the involution on �1
� A�1 is given by

�� � ���*�����*� �*�. �III.12�

Proof: 2⇒1 is a direct calculation. We prove 1⇒2. Calculate, with the aid of Eq. �III.10�,
“̄�(�a):

“̄���a ��„“��a*�*�…*��da*� �*�*��“��*�*a��da*� �*�*��“̄���a .
�III.13�

If the map “̄� is a covariant derivative, then there exists a generalized permutation, �, such that

“̄���a ����� �da ��“̄�a . �III.14�

Comparing the two equations �III.13� and �III.14� we obtain

�da*� �*�*���� �da �. �III.15�

This equation is valid for arbitrary a and � so the involution in �1
� A�1 verifies:

���� ��*����*� ��*�. �III.16�

The involution property, **�1, gives (���)2�1. It remains to prove that ��� . In order to do
this, calculate, using Eq. �III.10�, “̄�(a�):

“̄��a���a„“���*�…*�„���*�da*�…*. �III.17�

Since “̄� is a linear connection we have

“̄��a���a“̄���da� � . �III.18�

Comparing Eq. �III.17� and �III.8� we get

da� ��„���*�da*�…*. �III.19�

This equation is valid for arbitrary a and �, so we have

��� ��„���*� ��*�…*. �III.20�

Comparing Eqs. �III.16� and �III.20� leads to the quality of � and �. �
Definition 3.5: For a given involution * on �1

� A�1, a generalized permutation � is defined
to be real if it satisfies the following property:

��*�*�� �III.21�

on �1
� A�1.

Now, if one wants to find an involution * on �1
� A�1 such that “̄� is a linear connection,

then one should take, according to Proposition 3.4, �III.12� as a definition of *. The condition for
this to be possible is (���)2�1. If one further demands that � be real, then one has to use the
following:

Proposition 3.6: Suppose that the generalized permutation, �, verifies Eq. (III.11) and that the
involution on �1

� A�1 is given by � ��. Then � is real iff it is a generalized flip.
Proof: The reality condition reads
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����������� . �III.22�

Since � is an automorphism, this equation leads to

������� . �III.23�

The relation in (���)2�1 gives �2�1. �
The definition of the complex conjugate of a linear connection allows the following:

Definition 3.7: A real linear connection associated to a generalized permutation � is defined by
“̄��“�.

Remark: The involution on �1
� A�1 defined above induces an involution on �2 by

(�∧��)*��„(� � ��)*…����*∧�*. This is due to the property �III.1�.
Definition 3.8: The torsion T of a linear connection “� is defined as the linear map from

�1 to �2 given by

T�d���“�. �III.24�

Proposition 3.9: The torsion map is a bimodule homomorphism.
Proof: It is an immediate consequence of the condition �III.1�. �
Definition 3.10: The curvature R of a linear connection “� is defined as the linear map from

�1 to �2
� A�1 given by

R�„�T�1 ���� �1 �“�…“�. �III.25�

Proposition 3.11: The curvature is a left-module homomorphism.
Proof: A straightforward calculation. �
Definition 3.12: A metric g is defined as an element of �1

� A�1 satisfying

��g ��0. �III.26�

If �1
� A�1 is equipped with an involution, a real metric is defined by g*�g .
The definition of a nondegenerate metric requires some more structure on the algebra A. This

structure must guarantee that the dimension of �1 as a left module be well defined. For example,
if A is a Hopf algebra, then it is well known that this is so �see, e.g., Ref. 9�. If it exists, let
�a, a�1,.. . ,N , be a free basis of �1 as a left module. Then a metric can be written uniquely in
the form

g�gab�a
� �b, �III.27�

with gab�A. We will call a metric nondegenerate if the matrix whose elements are gab is
invertible.

Definition 3.13: A metric g and a linear connection “� are said to be compatible if the
condition “�g�0 is satisfied.

IV. DETERMINATION OF � ON GLQ(N)

In addition to the previous requirements on �, it is natural, in the context of quantum groups,
to add the requirement of bicovariance:

Definition 4.1: A generalized permutation, �, is called bicovariant iff

�1� ���L��L� , �� �1 ��R��R� . �IV.1�
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Following the R-matrix technique, that is the determination of all unknown maps from the
R-matrix and q , we will determine the candidates for the map � in terms of R . We recall from
�II.13� and �III.1� that the generalized permutation � is an automorphism of �1

� A�1 verifying

�1�������1 ��0, �IV.2�

the bicovariance requirements �IV.1�, and when A is equipped with an involution, that is for real
q and for �q��1, the involution property �III.11�.

In order to find candidates for �, we shall prove the following Proposition, which, in its first
part, is a generalization of Proposition 3.1 of Ref. 9:

Proposition 4.2: Let � i j , i , j�0,1, be complex numbers.
�1� There exists a unique bimodule homomorphism, �, of �1

� A�1 such that

��dT1�dT2���
i , j

� i jRidT1�dT2R j. �IV.3�

Moreover,
�2� The map � is bicovariant.
�3� The map � is a generalized permutation iff

�01��10�0, �00���10��11��1, �IV.4�

where, we recall, ��q�q�1.
In this case, � obeys the characteristic equation

���1 �����1�����2��0, �IV.5�

�1��1��10�q�q�1���11�1�q2�, �IV.6�

�2��1��10�q�q�1���11�1�q�2�. �IV.7�

Proof: An element � of �1
� A�1 can be written in a unique way as

��� akl
i j dTi

k
�dT j

l�Tr„a�dT1�dT2�…, �IV.8�

where a�Mn(A)�Mn(A). This is a consequence of the fact that the dT generate �1 as a left
module. The action of � on � is defined by

�����Tr�a� i jRidT1�dT2R j�. �IV.9�

It clearly satisfies �IV.3�. It remains to check that � defined in this way is a bimodule homomor-
phism. The left-module homomorphism property is assured by construction. To check the right-
module homomorphism property it suffices to verify that

��dT1�dT2T3����dT1�dT2�T3 . �IV.10�

This is so because the T generate the algebra. The left-hand side of Eq. �IV.10� can be written,
after successive use of Eq. �II.11�, as

��dT1�R23
�1T2dT3R23

�1��R23
�1R12

�1��T1dT2�dT3�R12
�1R23

�1. �IV.11�

Here the subscripts of the R-matrix denote the two spaces on which it acts. Next, we use the
left-module property to write the right-hand side of Eq. �IV.11� as
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R23
�1R12

�1T1��dT2�dT3�R12
�1R23

�1�� i jR23
�1R12

�1R23
i T1dT2�dT3R23

j R12
�1R23

�1. �IV.12�

The right-hand side of Eq. �IV.10� can be written as

� i jR12
i dT1�dT2R12

j T3�� i jR12
i dT1�dT2T3R12

j . �IV.13�

The commutation relations �II.11� allow us to write this term as

� i jR12
i dT1�R23

�1T2dT3R23
�1R12

j �� i jR12
i R23

�1R12
�1T1dT2�dT3R12

�1R23
�1R12

j . �IV.14�

As a consequence of the Yang–Baxter equation we have

R12
i R23

�1R12
�1�R23

�1R12
�1R23

i ,
�IV.15�

R23
i R12

�1R23
�1�R12

�1R23
�1R12

i .

The right hand sides of Eqs. �IV.12� and �IV.14� are thus equal. This proves the first point of the
Proposition.

In order to prove the bicovariance of �, it suffices to prove that

�L��dT1�dT2���1� ���L�dT1�dT2�, �IV.16�

�R��dT1�dT2���� �1 ��R�dT1�dT2�. �IV.17�

This is due to the fact that dT1�dT2 generate �1
� A�1 as a left module. Using Eq. �IV.3� and

�L�dT1�dT2��T1T2�dT1�dT2 , �IV.18�

�R�dT1�dT2��dT1�dT2�T1T2 , �IV.19�

Eqs. �IV.16� and �IV.17� can be written as

� i jRiT1T2�dT1�dT2R j�� i jT1T2�RidT1�dT2R j, �IV.20�

� i jRidT1�dT2�T1T2R j�� i jRidT1�dT2R j
�T1T2 . �IV.21�

These equations are true due to the commutation relations �II.1�. This proves point 2 of the
Proposition.

Point 3 is a straightforward calculation using Eqs. �II.18� and the Hecke condition �II.4�. �
Proposition 4.2 gives us a two-parameter family of bicovariant generalized permutations. We

turn to examine some of their properties. First, note that the maps � have the same eigenspaces
even though their eigenvalues might be different. In fact, if we introduce the projectors

�1�dT1�dT2�� P̂qdT1�dT2P̂q ,

�2�dT1�dT2�� P̂�q�1dT1�dT2P̂�q�1,
�IV.22�

�3�dT1�dT2�� P̂�q�1dT1�dT2P̂q ,

�4�dT1�dT2�� P̂qdT1�dT2P̂�q�1,

with
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P̂q�
R�q�1

q�q�1 , P̂�q�1�
q�R
q�q�1 , �IV.23�

then the generalized permutation � can be written as

��1 ,�2��1�1��2�2��3��4 , �IV.24�

and the expression for � is

���1��2�q2�3�q�2�4 . �IV.25�

In the commutative limit �1��2 tends to the projector onto symmetric elements of �1

� A�1 and �3��4 to the projector onto antisymmetric elements. The multiplication map � may
be expressed in terms of these projections as

���1�q2��3��1�q�2��4 . �IV.26�

So �2 can be identified with the projection of �1
� A�1:

�2���3��4��
1

� A�1. �IV.27�

An imbedding i of �2 in �1
� A�1 verifying ��i�1�2, exists and is given by

i�
1

1�q2 �3�
1

1�q�2 �4 . �IV.28�

With the aid of this imbedding we obtain the expression �III.3� for � :

���1�2i����1�2��1��2�. �IV.29�

Note that this � verifies �2�1; it is equal to �1 on �2 and to �1 on (�1��2)(�1
� A�1). It

corresponds to �1��2�1 in Eq. �IV.24�.
Another simple solution to Eqs. �IV.4�, which in addition obeys the Yang–Baxter equation, is

given by �q�2,q2,

�R�dT1�dT2��R�1dT1�dT2R�1. �IV.30�

This � is to be compared with the � found in Ref. 32 for the quantum plane. Indeed, it could be
obtained in the same way from the differential calculus �see Lemma 5.13�.

We turn now to consider involutions for �q��1. Then one can consider the involution
(T j

i )*�T j
i on GLq(n). This involution is compatible with the relations on the algebra because, for

�q��1 and R given by �II.3�, one has

R̄kl
i��R�1� lk

j i �IV.31�

where R̄ is the complex conjugate of R . In this case, the quantum group is GLq(n ,R).
Proposition 4.3: Let �q��1. A generalized permutation, ��1 ,�2, defines an involution iff

��1����2��1. �IV.32�

Proof: For �q��1 relations �IV.31� imply that

��� i���� i , i�1,2,3,4. �IV.33�
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So, the condition �III.11� reads

��1�2�1���2�2�2��3��4�1, �IV.34�

which completes the Proof. �
Remark: The previously defined �� and �R satisfy Eqs. �III.11�.

V. LINEAR CONNECTIONS ON GLQ(N)

In this section we determine linear connections on the quantum group GLq(n) and study their
properties.

Proposition 5.1: Let � be any generalized permutation. The map “0
� defined by

“0
� :�1→�1

� A�1,
�V.1�

“0
������ � ����� � ��.

is a linear connection associated to �.
Proof: Calculate first

“0
��a������ ,a��a�� � ����a� � �� �V.2�

and then use the expression of the exterior derivative and the bimodule property to obtain

“0
��a���da� ��a“0

�� . �V.3�

Similarly, calculate

“0
���a ��� � �a��„� � ��� , a���a �…,

���� �da ����0
���a . �V.4�

This completes the Proof. �
Remarks:
�1� The linear connection “0

� can be defined on any differential calculus where the exterior
derivative is a graded commutator. See Ref. 31 for another example.

�2� For ���1 the resulting covariant derivative “0
� is i�d , where i is the embedding of

�2 into �1
� A�1, by Eq. �II.21�.

Proposition 5.2: The extension of “0
� to the tensor product of s copies of �1 is given by

“0
���� � ���s�� � ��, ����1

� A•••�1. �V.5�

Proof: A direct application of Proposition 3.3. �
Proposition 5.3: There are no nonvanishing bimodule homomorphisms from �1 to �1

� A�1.
Proof: We will use the following Lemma proved in Refs. 7, 13, and 27.
Lemma 5.4: Let c be the q-determinant of T ,

c�detq T��
p

��q � l�p �Tp�1 �
1 Tp�2 �

2 •••Tp�n �
n , �V.6�

where the sum is over all permutations on n elements and l(p) is the number of transpositions in
the permutation p . Then c is in the center of A and verifies �c�q�2c� for all � in �1.

An immediate consequence of the preceding Lemma is the following.
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Corollary 5.5: �c�q�4c� , ����1
� A�1.

We are now in position to prove the Proposition. Let � be a bimodule homomorphism from
�1 to �1

� A�1 and let ���1. By the homomorphism property and Lemma 5.4, we get

����c�q�2c����. �V.7�

On the other hand, since �(�)��1
� A�1, by Corollary 5.5 we obtain

����c�q�4c����. �V.8�

Comparing these two equations we prove the Proposition. �
As a direct consequence of the preceding and of the third remark following Definition 3.2 we

obtain the following
Theorem 5.6: For any generalized permutation � on GLq(n), there exists one and only one

associated linear connection, given by (V.1).
We now turn to the study of some of the properties of the linear connection “0

� .
Proposition 5.7: For any generalized permutation �, the linear connection “0

� has vanishing
torsion.

Proof: Calculate ��“0
�

��“0
����∧���∧��d� , �V.9�

where we have used the property �III.1�. The proof of the Proposition follows from �III.24�. �
Proposition 5.8: For any generalized permutation �, the linear connection “0

� has the ex-
pression

“0
��a�������a

� ��„��1�1 ��1���2�1 ��2��q2�1 ��3��q�2�1 ��4…�a
� �

�V.10�

on the left invariant one-forms �a, and

“0
��a����1����a

� ��„��1�1 ��1���2�1 ��2��q�2�1 ��3��q2�1 ��4…�a
� �
�V.11�

on the right-invariant one-forms �a

Proof: This is an immediate consequence of the definition of �, the right invariance of �, and
Eq. �IV.24�. •

Definition 5.9: A bicovariant linear connection, “, is defined by the properties
�1� “ ��L��L“ � left covariance�, �V.12�

�“ �1 ��R��R“ �right covariance�. �V.13�

Proposition 5.10: The linear connections associated to the generalized permutations ��1 ,�2 of
formula (IV.24) are bicovariant.

Proof: First, one sees that � and ��1 ,�2 are bicovariant. Then, using formula �V.10� and the
left invariance of �a one sees that formula �V.12� is true when applied to �a. Now, the one-forms
�a form a basis of the left module �1. Then, formula �III.4� and the previous result show that the
associated linear connection is left invariant.

For the right invariance, one has to consider the right-invariant one-forms �a, which consti-
tute a basis of �1 as a right module and formulas �V.11� and �III.5�. •

The following Proposition allows one to calculate explicitly the covariant derivative associ-
ated to a generalized permutation given by Eq. �IV.24�:
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Proposition 5.11: Define �, �, and � by

��q�q�1, ��
�1��2
q�2�q2 , ��

�1q2��2q�2

q�2�q2 ; �V.14�

the linear connection associated to the generalized permutation, ��1 ,�2, acts on left-invariant
one-forms as follows:

“0
��1 ,�2� j

i��
1
�2

�1������k
i∧� j

k���k
i

� � j
k�
1
2 �1������� j

i
� ��� � � j

i �

�
�2

2�2
�1������� j

i
� ��� � � j

i �. �V.15�

Proof: First we note that ��1 ,�2 of �IV.24� can be written as

��1 ,�2���1�1 ��1���2�1 ��2�1, �V.16�

so that “� j
i can be expressed as

“� j
i�� � � j

i�� j
i
� �����1�1 ��1���2�1 ��2�� j

i
� � . �V.17�

It remains to calculate the term in the brackets of �V.17�. We will do so by calculating it for two
different values of the couple (�1 ,�2) with the aid of the following two Lemmata.

Lemma 5.12: The covariant derivative associated to �� acts on left-invariant one-forms as
follows:

“0
��� j

i��
2
�2

�k
i∧� j

k�
�2

�2
�� � � j

i�� j
i
� ��. �V.18�

Proof: The Proof is a straightforward calculation exploiting the fact that �� can be expressed
in terms of � as

����1�2
���q2����q�2�

�2
, �V.19�

as well as the equation

d� j
i��1���� � � j

i���k
i∧� j

k , �V.20�

which allows us to eliminate �(� � � j
i ) in “��� j

i . �
Lemma 5.13: The covariant derivative associated to �R is determined by

“�RdT j
i�0. �V.21�

Proof: Calculate the covariant derivative associated to �R of the two sides of Eq. �II.11�. �
The Proof of the Proposition is completed after expressing “��1 ,�2� j

i in terms of “�∧� j
i and“�R� j

i as

“��1 ,�2� j
i� 1

2�1������� � � j
i�� j

i
� ��� 1

2�1�����“�∧� j
i��“�R� j

i . �V.22�

This equation is obtained after the evaluation of �k� j
i
� � , k�1,2, in terms of “�∧� j

i and“�R� j
i . �

3275Georgelin et al.: Noncommutative Riemannian geometry of GLq(n)

J. Math. Phys., Vol. 38, No. 6, June 1997

Downloaded¬05¬Jul¬2010¬to¬193.48.219.8.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



Finally, we consider the limit of the linear connections determined above when q→1. In this
limit the differential calculus tends to the usual commutative differential calculus. The one-form �
has a singular limit but �� tends to the right- and left-invariant one-form � on GL(n). First of all,
a necessary condition for the limit to be nonsingular is that the generalized permutation tend to the
flip operator that is �1→1 and �2→1. A more precise statement, giving a necessary and sufficient
condition for the limit to be nonsingular, is the following:

Proposition 5.14: Let

� i�
� i�1

�
, i�1,2, �V.23�

the linear connection associated to ��1 ,�2 admits a nonsingular limit iff �1 and �2 have finite
limits � i�q�1 when q tends to 1. The linear connection, in the limit, is determined by

“� j
i��

1
2 �1��0��k

i∧� j
k��0�k

i
� � j

k�
�0

2 �� � � j
i�� j

i
� ��, �V.24�

where

�0�
�2�q�1��1�q�1

2 , �0�
�2�q�1��1�q�1

2 . �V.25�

Proof: A direct application of Proposition 5.11. �
Remark: When �1 and �2 tend to 0, which is the case of �∧ , �0 and �0 vanish and the

limiting linear connection is given by

“� j
i�� 1

2�k
i∧� j

k . �V.26�

VI. CONCLUSION

The main result of this paper is the existence and uniqueness, for generic q , of the linear
connection associated to a given generalized permutation. This connection is bicovariant and
torsion-free. This is in contrast to the commutative case (q�1) where there are an infinite number
of linear connections not necessarily bicovariant and torsion-free and where the generalized per-
mutation is constrained to be the flip operator. It is also in contrast to the cases with q a root of
unity where Proposition 5.3 is not in general valid. The arbitrariness in the deformed case lies
merely in the generalized permutation for which we have found a two-parameter family �Eq.
�IV.24��. These parameters may be arbitrary functions of q and are constrained by the involution
property �Proposition 4.3�. The commutative limit is nonsingular for a class of such functions
which tend to the identity when q→1. The commutative limit of the linear connection is a subset
of right- and left-invariant linear connections on GL(n).

We have used the differential calculus �II.10� to obtain our results. Had we used another
differential calculus with the usual commutative limit the qualitative aspects of our conclusions, in
particular the uniqueness of the linear connection associated to a given generalized permutation,
are expected to remain the same.
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